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Privacy-Preserving Cryptography

Important Goal

Allowing functionality while preserving anonymity

e.g. e-voting, e-cash, group signatures, group encryption, …
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Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

timestamp

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

signature

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

signature
???

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

signature
???

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt’91)

A user wants to take public transportations.

signature

I Authenticity & Integrity

I Anonymity

I Dynamicity Join

I Traceability POLICE

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 3/31



Outline

Practical group signature
(AsiaCCS’16)

First lattice-based signa-
ture with efficient protocols
(Asiacrypt’16)

ZK argument of correct
evaluation of commit-
ted branching programs
(Asiacrypt’16)

ZK argument for quadratic
relations
(Asiacrypt’17)

Pairings

Lattices
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Motivation: Firewall Filtering

I A user wants to send a message to a group behind a firewall

I The recipient of the message can be a sensitive information

I Behind firewall: anonymity is lifted to route messages
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History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt’07)

I Modular design from anonymous PKE, signatures and
interactive ZK proofs

I Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings
(Cathalo-Libert-Yung, Asiacrypt’09)

2013 Various improvements (El Aimani-Joye, ACNS’13)

2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC’14)

7 Existing realizations rely on quantum-vulnerable assumptions

→ From lattices: several realizations of group signatures:
[GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LMN16, LLMN16]
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Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt’07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member
while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, …

Definition

A set of algorithms or protocols: (Setup, Join, Enc,Dec,Open, 〈P,V〉)

Properties:

I Message secrecy

I Receiver anonymity (within a group)

I Soundness (⇒ traceability)
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Group Encryption: Receiver Anonymity

Indistinguishability-based game

A C

b′

b←↩ U({0, 1})
C? = EncpkOA,pkGM(pkb,pp, σb,M)

A wins if b = b′
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Hardness Assumptions: SIS and LWE (Ajtai 1996, Regev 2005)

Parameters: dimension n, #samples m ≥ n, modulus q.
For A ←↩ U(Zm×n

q ):

Small Integer Solution Learning With Errors

x

A = 0 mod q Am

n

, A
s
+ e mod q

s ←↩ Znq e small error

Goal: Given A ∈ Zm×n
q ,

find x ∈ Zm\{0} small

Goal: Given A , A s + e ,

find s ∈ Znq
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Lattice-Based Cryptography (Ajtai 1996, Regev 2005)

Why?

I Simple and asymptotically efficient;

I Conjectured quantum-resistant;

I Connection between average-case and worst-case problems;

I Powerful functionalities (e.g., FHE).

Remark: GS and GE rely on the same building blocks:

I Digital signatures;

I Public-Key encryption;

I Supporting Zero-Knowledge proofs.

What is the main difficulty?
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Zero-Knowledge Proofs (Goldwasser-Micali-Rackoff, STOC’85)

P V
w

Interactive protocol between prover P and verifier V such that:

Completeness: Correctness of the protocol.

Soundness: No cheating prover can convince the verifier.
Zero-Knowledge: Verifier learns nothing but the validity of the

statement.

I Non-interactive variants: NIZK proofs

I Random Oracle: allows transforming ZK to NIZK
(Fiat-Shamir, Crypto’86)

I Standard Model: using bilinear maps (Groth-Sahai, Eurocrypt’08)
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Zero-Knowledge Proofs for Lattices

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto’89): On Ring-LWE1, concise but not expressive.

Stern-like (Crypto’93): On LWE2, heavy but expressive.

Both deal with “linear relations”, i.e., of the form

X · s = y mod q

Examples: (I)SIS and LWE relations are linear

1Lyubashevsky, Asiacrypt’09
2Kawachi-Tanaka-Xagawa, Asiacrypt’08 and Ling-Nguyen-Stehlé-Wang, PKC’13
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The Case of Group Signatures

Modular design for GS1: sign-then-encrypt-then-prove

I GM issues a signature σ on id to each user

I Sign:

a user encrypts id to c under OA’s public key pkOA

User proves that:
1. He has a secret valid pair (id, σ), w.r.t. vkGM

ISIS

2. c is a valid encryption of id, w.r.t. pkOA

LWE

3 Known techniques allow realizing the ZK proofs

Remark: The message is embedded in the NIZK proof

1Bellare, Micciancio and Warinschi at Eurocrypt’03
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ISIS

2. c is a valid encryption of id, w.r.t. pkOA

LWE

3 Known techniques allow realizing the ZK proofs

Remark: The message is embedded in the NIZK proof
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Main Difficulty in Group Encryption

Modular design (Kiayias-Tsiounis-Yung, Asiacrypt’07):

I Each member has an anonymous encryption key pair (pk, sk)

I GM signs each pk and publishes (pk, σ)

I Sender uses pk to encrypt a message µ satisfying R; obtains c

I Sender also encrypts pk under pkOA, obtains cOA

I Sender proves:

1. c = Encpk(µ)

2. Knowledge of σ s.t. VerifvkGM(pk, σ); cOA = EncpkOA(pk); R(µ) = >.

7 We have to handle relations with hidden-but-certified matrix:

X · s + e = b mod q

We call this “quadratic relations”.
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Stern’s Protocol (Crypto’93)

Stern’s protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given P ∈ Zn×m2 and v ∈ Zn2 , find x s.t. w(x) = w and

P

m

n
x =

v
mod 2

Kawachi-Tanaka-Xagawa’08: mod 2→ mod q

Ling-Nguyen-Stehlé-Wang’13: Extends Stern’s protocol to SIS/LWE

Recent uses of Stern-like protocols in lattice-based crypto:
[LNW15, LLNW16, LMN16, LLNMW16, LLNMW17, LLNW17]
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Stern’s Ideas

Syndrome Decoding Problem

Given P ∈ Zn×m2 and v ∈ Zn2 , find x s.t. w(x) = w and

P · x = v mod 2

1. Permuting: Random permutation proves constraints on x

Send the verifier π(x )
x binary of hamming weight w ⇔ π(x ) does

+ π’s randomness preserves the secrecy of x

2. Masking: Random mask r is used to prove the linear equation

Send the verifier y = x + r and show that P · y = v + P · r

Idea:

1. Pre-process the given quadratic relation
2. Exploit permutations to prove the relation
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Deal with Quadratic Relations: First Step

Goal: Express X · s as Q · z

Idea: Binary decomposition

1. X · s =
∑n

i=1 xi · si
xi denotes i-th column of X; si is the i-th component of s

2. xi · si = H · (xi,1 · si, . . . , xi,mk · si)T

k = dlog qe; H is the decomposition matrix Zmq → {0, 1}mk

3. xi,j · si = xi,j · (h̃1, . . . , h̃k) · (si,1, . . . , si,k)T

= (h̃1, . . . , h̃k) · (xi,j · si,1, . . . , xi,j · si,k)T .

xi,j · si has form “(public matrix)·(secret vector)”⇒ so does xi · si

⇒ so does X · s = Q · z mod q
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Where are we?

We expressed X · s as Q · z .

I z is binary and quadratic: each zi is a product of a bit from X

with a bit from s

I The component bits additionally satisfy other relations

Goal

Prove that a secret bit z is of form z = c1 · c2, while remaining able
to prove that the c1 and c2 satisfy other equations.
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Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

I For c ∈ {0, 1} let c̄ = 1− c. For c1, c2 ∈ {0, 1}, define

ext(c1, c2) = (c̄1 · c̄2, c̄1 · c2, c1 · c̄2, c1 · c2)T

I For b1,b2 ∈ {0, 1}, define the permutation Tb1,b2 :

Tb1,b2
(
(v0,0, v0,1, v1,0, v1,1)T

)
= (vb1,b2 , vb1,b̄2 , vb̄1,b2 , vb̄1,b̄2)

T

Note that for all c1, c2,b1,b2 ∈ {0, 1}, it holds that

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 20/31



Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

I For c ∈ {0, 1} let c̄ = 1− c. For c1, c2 ∈ {0, 1}, define

ext(c1, c2) = (c̄1 · c̄2, c̄1 · c2, c1 · c̄2, c1 · c2)T

I For b1,b2 ∈ {0, 1}, define the permutation Tb1,b2 :

Tb1,b2
(
(v0,0, v0,1, v1,0, v1,1)T

)
= (vb1,b2 , vb1,b̄2 , vb̄1,b2 , vb̄1,b̄2)

T

Note that for all c1, c2,b1,b2 ∈ {0, 1}, it holds that

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 20/31



Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

I For c ∈ {0, 1} let c̄ = 1− c. For c1, c2 ∈ {0, 1}, define

ext(c1, c2) = (c̄1 · c̄2, c̄1 · c2, c1 · c̄2, c1 · c2)T

I For b1,b2 ∈ {0, 1}, define the permutation Tb1,b2 :

Tb1,b2
(
(v0,0, v0,1, v1,0, v1,1)T

)
= (vb1,b2 , vb1,b̄2 , vb̄1,b2 , vb̄1,b̄2)

T

Note that for all c1, c2,b1,b2 ∈ {0, 1}, it holds that

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 20/31



Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

I For c ∈ {0, 1} let c̄ = 1− c. For c1, c2 ∈ {0, 1}, define

ext(c1, c2) = (c̄1 · c̄2, c̄1 · c2, c1 · c̄2, c1 · c2)T

I For b1,b2 ∈ {0, 1}, define the permutation Tb1,b2 :

Tb1,b2
(
(v0,0, v0,1, v1,0, v1,1)T

)
= (vb1,b2 , vb1,b̄2 , vb̄1,b2 , vb̄1,b̄2)

T

Note that for all c1, c2,b1,b2 ∈ {0, 1}, it holds that

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

Fabrice Mouhartem Privacy-Preserving Cryptography from Pairings and Lattices 18/10/2018 20/31



Solution to the Sub-Problem

Goal

Prove that a secret bit z is of form z = c1 · c2, while remaining able
to prove that the c1 and c2 satisfy other equations.

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

I Extend z = c1 · c2 to v = ext(c1, c2)

I Permute v: Tb1,b2(v) for b1,b2 ←↩ U({0, 1})

I same bits c1, c2 appear in other equations⇒ same masks b1,b2
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Group Encryption: Putting Everything Together

Ingredients

I Anonymous encryption [ABB10] IBE + [CHK04] transform
I Signature scheme [LLMNW16]

I Supporting ZK proofs [Presented result]

+ Modular construction [KTY07]

I Our results (Libert-Ling-M-Nguyen-Wang, Asiacrypt’16):

Zero-Knowledge arguments for “quadratic relations”:

X · s + e = b mod q.

→ Building block for cryptography: may be of independent interest

First construction of group encryption from (classical) lattice
assumptions proven secure in the standard model
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Outline

Practical group signature
(AsiaCCS’16)

First lattice-based signa-
ture with efficient protocols
(Asiacrypt’16)

ZK argument of correct
evaluation of commit-
ted branching programs
(Asiacrypt’16)

ZK argument for quadratic
relations
(Asiacrypt’17)

Pairings

Lattices
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First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt’16)

A signature scheme (Keygen, Signsk, Verifvk) with efficient protocols1:

I To sign a committed value;

I To prove possession of a signature.

Security

I Unforgeability;
I Security of the two protocols;
I Anonymity.

→ Many applications for privacy-based protocols.

7 Existing constructions rely on Strong RSA assumption or bilinear maps.

1Camenisch-Lysyanskaya, SCN’02
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Outline

Practical group signature
(AsiaCCS’16)

First lattice-based signa-
ture with efficient protocols
(Asiacrypt’16)

ZK argument of correct
evaluation of commit-
ted branching programs
(Asiacrypt’16)

ZK argument for quadratic
relations
(Asiacrypt’17)

Pairings

Lattices
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Adaptive Oblivious Transfer

(Naor-Pinkas, Crypto’99; Libert-Ling-M-Nguyen-Wang, Asiacrypt’17)

Research center

DNA Database

Transfer

I DNA storage is expensive

I DNA Database queries are sensitive

make queries anonymous and unlinkable

Extending expressiveness of Stern-like protocols
⇒ First construction from lattices with access control
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Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS’16)

Pairing

Let G, Ĝ and GT be cyclic groups of prime order p.
e : G× Ĝ −→ GT

∀g ∈ G, ĝ ∈ Ĝ,a,b ∈ Z, e(ga, ĝb) = e(g, ĝ)ab

Hardness relies on (variant of) Decision Diffie-Hellman

− Pairings are not quantum-resistant (Shor 1999)

+ Pairings are more practical than lattices

I Design supported by an open-source implementation in C

I Use Relic toolkit
https://gforge.inria.fr/projects/sigmasig-c/
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Let G, Ĝ and GT be cyclic groups of prime order p.
e : G× Ĝ −→ GT
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Conclusion

My Research so far

Around two axes:

I (Privacy-preserving) protocol design
From pairings

From lattices

I Security proofs

Some disadvantages:

Adaptive OT Use of “LWE noise flooding”

Dynamic GS Use of lattice trapdoors

Stern-like proofs Constant soundness error of 2/3
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Open Problems

Follow-ups

I Universally composable oblivious transfer from LWE?

I More efficient compact e-cash system?

Zero-knowledge proofs

I Negligible soundness error for expressive statements in lattices?
I NIZK for NP from LWE?

Cryptographic constructions

I More efficient signatures (compatible with ZK proofs)?

I Efficient trapdoor-free (H)IBE?
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Thank you for your Attention

Practical group signature
(AsiaCCS’16)

First lattice-based signa-
ture with efficient protocols
(Asiacrypt’16)

ZK argument of correct
evaluation of commit-
ted branching programs
(Asiacrypt’16)

ZK argument for quadratic
relations
(Asiacrypt’17)

Pairings

Lattices

What next? More protocol designs, zero-knowledge proofs and
foundations of cryptographic constructions!
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