Privacy-Preserving Cryptography from Pairings and Lattices

Fabrice Mouhartem
Under the supervision of Benoît Libert
October 18th, 2018
École Normale Supérieure de Lyon, France

Privacy-Preserving Cryptography

Important Goal
 Allowing functionality while preserving anonymity

Privacy-Preserving Cryptography

Important Goal

Allowing functionality while preserving anonymity
e.g. e-voting, e-cash, group signatures, group encryption, ...

Privacy-Preserving Cryptography

Important Goal

Allowing functionality while preserving anonymity
e.g. e-voting, e-cash, group signatures, group encryption, ...

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'91)

A user wants to take public transportations.

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'91)

A user wants to take public transportations.

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'91)

A user wants to take public transportations.

- Authenticity \& Integrity

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'91)

wants to take public transportations.

- Authenticity \& Integrity
- Anonymity

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'9)

wants to take public transportations.

- Authenticity \& Integrity
- Anonymity
- Dynamicity $\stackrel{\text { Join }}{\longleftrightarrow}$ (

Example: (Dynamic) Group Signatures (Chaum-van Heyst, Eurocrypt'91)

A user wants to take public transportations.

- Authenticity \& Integrity
- Anonymity
- Dynamicity $\mathrm{i} \stackrel{\text { Join }}{\longleftrightarrow}$
- Traceability 菅

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations
(Asiacrypt'17)

Motivation: Firewall Filtering

- A user wants to send a message to a group behind a firewall

Motivation: Firewall Filtering

- A user wants to send a message to a group behind a firewall
- The recipient of the message can be a sensitive information

Motivation: Firewall Filtering

- A user wants to send a message to a group behind a firewall
- The recipient of the message can be a sensitive information
- Behind firewall: anonymity is lifted to route messages

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

2013 Various improvements (El Aimani-Joye, ACNS'13)

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

2013 Various improvements (El Aimani-Joye, ACNS'13)
2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

2013 Various improvements (El Aimani-Joye, ACNS'13)
2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)
\boldsymbol{x} Existing realizations rely on quantum-vulnerable assumptions

History of Group Encryption

2007 Introduction of group encryption (Kiayias-Tsiounis-Yung, Asiacrypt'07)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

2013 Various improvements (El Aimani-Joye, ACNS'13)
2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)
\boldsymbol{x} Existing realizations rely on quantum-vulnerable assumptions
\rightarrow From lattices: several realizations of group signatures: [GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LMN16, LLMN16]

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations
(Asiacrypt'17)

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt’07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications
Firewall filtering, key recovery, anonymous cloud storage, ...

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Properties:

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Properties:

- Message secrecy

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Properties:

- Message secrecy
- Receiver anonymity (within a group)

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Properties:

- Message secrecy
- Receiver anonymity (within a group)
- Soundness (\Rightarrow traceability)

Group Encryption (Kyiayias-Tsiounis-Yung, Asiacrypt'07)

Encryption analogue of group signatures:
Sender can encrypt a message to an anonymous group member while proving additional properties.

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle\mathcal{P}, \mathcal{V}\rangle$)

Properties:

- Message secrecy
- Receiver anonymity (within a group)
- Soundness (\Rightarrow traceability)

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

Group Encryption: Receiver Anonymity

Indistinguishability-based game

\mathcal{A} wins if $b=b^{\prime}$

Hardness Assumptions: SIS and LWE (Ajtai 1996, Regev 2005)

Parameters: dimension n, \#samples $m \geq n$, modulus q.
For $\triangle \hookleftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right)$:

Lattice-Based Cryptography (Aitai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- Powerful functionalities (e.g., FHE).

Lattice-Based Cryptography (Aitai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- Powerful functionalities (e.g., FHE).

Remark: GS and GE rely on the same building blocks:

- Digital signatures;
- Public-Key encryption;
- Supporting Zero-Knowledge proofs.

Lattice-Based Cryptography (Aitai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- Powerful functionalities (e.g., FHE).

Remark: GS and GE rely on the same building blocks:

- Digital signatures;
- Public-Key encryption;
- Supporting Zero-Knowledge proofs.

What is the main difficulty?

Zero-Knowledge Proofs (Goldwasser-Micali-Rackoff, STOC'85)

Interactive protocol between prover P and verifier V such that:
Completeness: Correctness of the protocol.

Zero-Knowledge Proofs (Goldwasser-Micali-Rackoff, STOC'85)

Interactive protocol between prover P and verifier V such that:
Completeness: Correctness of the protocol.
Soundness: No cheating prover can convince the verifier.

Zero-Knowledge Proofs (Goldwasser-Micali-Rackoff, STOC'85)

Interactive protocol between prover P and verifier V such that:
Completeness: Correctness of the protocol.
Soundness: No cheating prover can convince the verifier.
Zero-Knowledge: Verifier learns nothing but the validity of the statement.

Zero-Knowledge Proofs (Goldwasser-Micali-Rackoff, STOC'85)

Interactive protocol between prover P and verifier V such that:
Completeness: Correctness of the protocol.
Soundness: No cheating prover can convince the verifier.
Zero-Knowledge: Verifier learns nothing but the validity of the statement.

- Non-interactive variants: NIZK proofs
- Random Oracle: allows transforming ZK to NIZK (Fiat-Shamir, Crypto'86)
- Standard Model: using bilinear maps (Groth-Sahai, Eurocrypt'08)

Zero-Knowledge Proofs for Lattices

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE¹, concise but not expressive.
Stern-like (Crypto'93): On LWE², heavy but expressive.

[^0]
Zero-Knowledge Proofs for Lattices

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE ${ }^{1}$, concise but not expressive.
Stern-like (Crypto'93): On LWE², heavy but expressive.

Both deal with "linear relations", i.e., of the form

$$
x \cdot s=y \bmod q
$$

[^1]
Zero-Knowledge Proofs for Lattices

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE¹, concise but not expressive.
Stern-like (Crypto'93): On LWE², heavy but expressive.

Both deal with "linear relations", i.e., of the form

$$
\mathrm{x} \cdot \mathrm{~s}=\mathrm{y} \bmod q
$$

Examples: (I)SIS and LWE relations are linear

[^2]
The Case of Group Signatures

Modular design for GS¹: sign-then-encrypt-then-prove

- GM issues a signature σ on id to each user

[^3]
The Case of Group Signatures

Modular design for GS¹: sign-then-encrypt-then-prove

- GM issues a signature σ on id to each user
- Sign:

■ a user encrypts id to c under OA's public key pk ${ }_{\mathrm{OA}}$

[^4]
The Case of Group Signatures

Modular design for GS¹: sign-then-encrypt-then-prove

- GM issues a signature σ on id to each user
- Sign:

■ a user encrypts id to c under OA's public key pk ${ }_{\mathrm{OA}}$

- User proves that:

1. He has a secret valid pair (id, σ), w.r.t. $\mathrm{vk}_{\mathrm{GM}}$
2. c is a valid encryption of $i d$, w.r.t. $\mathrm{pk}_{\mathrm{OA}}$
[^5]
The Case of Group Signatures

Modular design for GS¹: sign-then-encrypt-then-prove

- GM issues a signature σ on id to each user
- Sign:

■ a user encrypts id to c under OA's public key pk ${ }_{\mathrm{OA}}$
■ User proves that:

1. He has a secret valid pair (id, σ), w.r.t. $v^{G M}$
2. c is a valid encryption of $i d$, w.r.t. $\mathrm{pk}_{\mathrm{OA}}$
\checkmark Known techniques allow realizing the ZK proofs
[^6]
The Case of Group Signatures

Modular design for GS¹: sign-then-encrypt-then-prove

- GM issues a signature σ on id to each user
- Sign:

■ a user encrypts id to c under OA's public key pk ${ }_{\mathrm{OA}}$
■ User proves that:

1. He has a secret valid pair (id, σ), w.r.t. $v^{\mathrm{GM}}{ }_{\mathrm{GM}}$
2. c is a valid encryption of $i d$, w.r.t. $\mathrm{pk}_{\mathrm{OA}}$
\checkmark Known techniques allow realizing the ZK proofs

Remark: The message is embedded in the NIZK proof

[^7]
Main Difficulty in Group Encryption

Modular design (Kiayias-Tsiounis-Yung, Asiacrypt'07):

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)

Main Difficulty in Group Encryption

Modular design (Kiayias-Tsiounis-Yung, Asiacrypt'07):

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R}; obtains c
- Sender also encrypts pk under pk $\mathrm{OAA}^{\text {, obtains } \mathrm{C}_{\mathrm{OA}}}$

Main Difficulty in Group Encryption

Modular design (Kiayias-Tsiounis-Yung, Asiacrypt'07):

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R}; obtains c
- Sender also encrypts pk under pk ${ }_{\mathrm{OA}}$, obtains C_{OA}
- Sender proves:

1. $\mathrm{C}=\operatorname{Enc}_{\mathrm{pk}}(\mu)$
2. Knowledge of σ s.t. Verif $_{\mathrm{V}_{\mathrm{k}_{G M}}}(\mathrm{pk}, \sigma) ; \mathrm{C}_{\mathrm{OA}}=\mathrm{Enc}_{\mathrm{p} \mathrm{k}_{\mathrm{OA}}}(\mathrm{pk}) ; \mathcal{R}(\mu)=\mathrm{T}$.

Main Difficulty in Group Encryption

Modular design (Kiayias-Tsiounis-Yung, Asiacrypt’07):

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R}; obtains c
- Sender also encrypts pk under pk OAA , obtains C_{OA}
- Sender proves:

1. $\mathrm{C}=\mathrm{Enc}_{\mathrm{pk}}(\mu)$
2. Knowledge of σ s.t. $\left.\operatorname{Verif}_{\mathrm{Vk}_{\mathrm{GM}}}(\mathrm{pk}, \sigma) ; \mathrm{C}_{\mathrm{OA}}=\mathrm{Enc}_{\mathrm{pk}}^{\mathrm{OA}} \mathrm{(pk}\right) ; \mathcal{R}(\mu)=\mathrm{T}$.
x We have to handle relations with hidden-but-certified matrix:

$$
\mathrm{x} \cdot \mathrm{~s}+\mathrm{e}=\mathrm{b} \bmod q
$$

Stern's Protocol (crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given $\mathrm{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{v} \in \mathbb{Z}_{2}^{n}$, find X s.t. $\mathrm{w}(\mathbb{X})=w$ and

Stern's Protocol (crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given $\bar{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{v} \in \mathbb{Z}_{2}^{n}$, find x s.t. $\mathrm{w}(\mathrm{x})=w$ and

Kawachi-Tanaka-Xagawa'08: $\bmod 2 \rightarrow \bmod q$
Ling-Nguyen-Stehlé-Wang'13: Extends Stern's protocol to SIS/LWE
Recent uses of Stern-like protocols in lattice-based crypto:
[LNW15, LLNW16, LMN16, LLNMW16, LLNMW17, LLNW17]

Stern's Ideas

Syndrome Decoding Problem

Given $\bar{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{v} \in \mathbb{Z}_{2}^{n}$, find X s.t. $\mathrm{w}(\mathbb{X})=w$ and

$$
\mathrm{P} \cdot \mathrm{x}=\mathrm{v} \bmod 2
$$

Stern's Ideas

Syndrome Decoding Problem

Given $\bar{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{V} \in \mathbb{Z}_{2}^{n}$, find X s.t. $\mathrm{w}(\mathbb{X})=w$ and

$$
\mathrm{P} \cdot \mathrm{x}=\mathrm{v} \bmod 2
$$

1. Permuting: Random permutation proves constraints on x

- Send the verifier $\pi(\mathrm{X})$
- x binary of hamming weight $w \Leftrightarrow \pi(\mathrm{x})$ does π 's randomness preserves the secrecy of x

Stern's Ideas

Syndrome Decoding Problem

Given $\bar{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{v} \in \mathbb{Z}_{2}^{n}$, find X s.t. $\mathrm{w}(\mathbb{X})=w$ and

$$
\mathrm{P} \cdot \mathrm{x}=\mathrm{v} \bmod 2
$$

1. Permuting: Random permutation proves constraints on x

- Send the verifier $\pi(\mathrm{x})$
- x binary of hamming weight $w \Leftrightarrow \pi(\mathrm{x})$ does
π 's randomness preserves the secrecy of x

2. Masking: Random mask r is used to prove the linear equation

- Send the verifier $\mathrm{y}=\mathrm{x}+\mathrm{r}$ and show that $\mathrm{P} \cdot \mathrm{y}=\mathrm{v}+\mathrm{P} \cdot \mathrm{r}$

Stern's Ideas

Syndrome Decoding Problem

Given $\bar{P} \in \mathbb{Z}_{2}^{n \times m}$ and $\mathrm{v} \in \mathbb{Z}_{2}^{n}$, find X s.t. $\mathrm{w}(\mathbb{X})=w$ and

$$
\mathrm{P} \cdot \mathrm{x}=\mathrm{v} \bmod 2
$$

1. Permuting: Random permutation proves constraints on x

- Send the verifier $\pi(\mathrm{x})$
- x binary of hamming weight $w \Leftrightarrow \pi(\mathrm{x})$ does
π 's randomness preserves the secrecy of x

2. Masking: Random mask r is used to prove the linear equation

- Send the verifier $\mathrm{y}=\mathrm{x}+\mathrm{r}$ and show that $\mathrm{P} \cdot \mathrm{y}=\mathrm{v}+\square \mathrm{P} \cdot \mathrm{r}$ Idea:

1. Pre-process the given quadratic relation
2. Exploit permutations to prove the relation

Deal with Quadratic Relations: First Step

Goal: Express X. S as Q . Z

Deal with Quadratic Relations: First Step

Goal: Express X. s as Q . Z
Idea: Binary decomposition

1. $X \cdot s=\sum_{i=1}^{n} x_{i} \cdot s_{i}$
x_{i} denotes i-th column of $X ; s_{i}$ is the i-th component of s

Deal with Quadratic Relations: First Step

Goal: Express X. Sas Q. Z
Idea: Binary decomposition

1. $X \cdot s=\sum_{i=1}^{n} x_{i} \cdot s_{i}$
x_{i} denotes i-th column of $X ; s_{i}$ is the i-th component of s
2. $\mathrm{x}_{i} \cdot s_{i}=\mathrm{H} \cdot\left(\mathrm{x}_{i, 1} \cdot s_{i}, \ldots, x_{i, m k} \cdot s_{i}\right)^{T}$
$k=\lceil\log q\rceil ; H$ is the decomposition matrix $\mathbb{Z}_{q}^{m} \rightarrow\{0,1\}^{m k}$

Deal with Quadratic Relations: First Step

Goal: Express X. sa as Q. Z
Idea: Binary decomposition

1. $X \cdot s=\sum_{i=1}^{n} x_{i} \cdot s_{i}$
x_{i} denotes i-th column of $X ; s_{i}$ is the i-th component of s
2. $x_{i} \cdot s_{i}=H \cdot\left(x_{i, 1} \cdot s_{i}, \ldots, x_{i, m k} \cdot s_{i}\right)^{\top}$
$k=\lceil\log q\rceil ; H$ is the decomposition matrix $\mathbb{Z}_{q}^{m} \rightarrow\{0,1\}^{m k}$
3.

$$
\begin{aligned}
x_{i, j} \cdot s_{i} & =x_{i, j} \cdot\left(\tilde{h}_{1}, \ldots, \tilde{h}_{k}\right) \cdot\left(s_{i, 1}, \ldots, s_{i, k}\right)^{\top} \\
& =\left(\tilde{h}_{1}, \ldots, \tilde{h}_{k}\right) \cdot\left(x_{i, j} \cdot s_{i, 1}, \ldots, x_{i, j} \cdot s_{i, k}\right)^{\top} .
\end{aligned}
$$

Deal with Quadratic Relations: First Step

Goal: Express X. sa as Q.Z
Idea: Binary decomposition

1. $X \cdot s=\sum_{i=1}^{n} x_{i} \cdot s_{i}$
x_{i} denotes i-th column of $X ; s_{i}$ is the i-th component of s
2. $x_{i} \cdot s_{i}=H \cdot\left(x_{i, 1} \cdot s_{i}, \ldots, x_{i, m k} \cdot s_{i}\right)^{T}$
$k=\lceil\log q\rceil ; H$ is the decomposition matrix $\mathbb{Z}_{q}^{m} \rightarrow\{0,1\}^{m k}$
3.

$$
\begin{aligned}
x_{i, j} \cdot s_{i} & =x_{i, j} \cdot\left(\tilde{h}_{1}, \ldots, \tilde{h}_{k}\right) \cdot\left(s_{i, 1}, \ldots, s_{i, k}\right)^{\top} \\
& =\left(\tilde{h}_{1}, \ldots, \tilde{h}_{k}\right) \cdot\left(x_{i, j} \cdot s_{i, 1}, \ldots, x_{i, j} \cdot s_{i, k}\right)^{\top} .
\end{aligned}
$$

$x_{i, j} \cdot s_{i}$ has form "(public matrix).(secret vector)" \Rightarrow so does $x_{i} \cdot s_{i}$

$$
\Rightarrow \text { so does } \mathrm{X} \cdot \mathrm{~s}=\mathrm{Q} \cdot \mathrm{z} \bmod q
$$

Where are we?

We expressed $\mathrm{X} \cdot \mathrm{s}$ as $\mathrm{Q} \cdot \mathrm{z}$.

Where are we?

We expressed $\mathrm{X} \cdot \mathrm{s}$ as $\mathrm{Q} \cdot \mathrm{z}$.

- z is binary and quadratic: each z_{i} is a product of a bit from x with a bit from s

Where are we?

We expressed $\mathrm{X} \cdot \mathrm{s}$ as $\mathrm{Q} \cdot \mathrm{Z}$.

- Z is binary and quadratic: each z_{i} is a product of a bit from with a bit from s
- The component bits additionally satisfy other relations

Where are we?

We expressed $\mathrm{X} \cdot \mathrm{s}$ as $\mathrm{Q} \cdot \mathrm{z}$.

- Z is binary and quadratic: each z_{i} is a product of a bit from with a bit from S
- The component bits additionally satisfy other relations

Goal
 Prove that a secret bit z is of form $z=c_{1} \cdot c_{2}$, while remaining able to prove that the c_{1} and c_{2} satisfy other equations.

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

- For $c \in\{0,1\}$ let $\bar{c}=1-c$. For $c_{1}, c_{2} \in\{0,1\}$, define

$$
\operatorname{ext}\left(c_{1}, c_{2}\right)=\left(\bar{c}_{1} \cdot \bar{c}_{2}, \bar{c}_{1} \cdot c_{2}, c_{1} \cdot \bar{c}_{2}, c_{1} \cdot c_{2}\right)^{\top}
$$

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

- For $c \in\{0,1\}$ let $\bar{c}=1-c$. For $c_{1}, c_{2} \in\{0,1\}$, define

$$
\operatorname{ext}\left(c_{1}, c_{2}\right)=\left(\bar{c}_{1} \cdot \bar{c}_{2}, \bar{c}_{1} \cdot c_{2}, c_{1} \cdot \bar{c}_{2}, c_{1} \cdot c_{2}\right)^{\top}
$$

- For $b_{1}, b_{2} \in\{0,1\}$, define the permutation $T_{b_{1}, b_{2}}$:

$$
T_{b_{1}, b_{2}}\left(\left(v_{0,0}, v_{0,1}, v_{1,0}, v_{1,1}\right)^{T}\right)=\left(v_{b_{1}, b_{2}}, v_{b_{1}, \bar{b}_{2}}, v_{\bar{b}_{1}, b_{2}}, v_{\bar{b}_{1}, \bar{b}_{2}}\right)^{\top}
$$

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

- For $c \in\{0,1\}$ let $\bar{c}=1-c$. For $c_{1}, c_{2} \in\{0,1\}$, define

$$
\operatorname{ext}\left(c_{1}, c_{2}\right)=\left(\bar{c}_{1} \cdot \bar{c}_{2}, \bar{c}_{1} \cdot c_{2}, c_{1} \cdot \bar{c}_{2}, c_{1} \cdot c_{2}\right)^{\top}
$$

- For $b_{1}, b_{2} \in\{0,1\}$, define the permutation $T_{b_{1}, b_{2}}$:

$$
T_{b_{1}, b_{2}}\left(\left(v_{0,0}, v_{0,1}, v_{1,0}, v_{1,1}\right)^{T}\right)=\left(v_{b_{1}, b_{2}}, v_{b_{1}, \bar{b}_{2}}, v_{\bar{b}_{1}, b_{2}}, v_{\bar{b}_{1}, \bar{b}_{2}}\right)^{\top}
$$

Note that for all $c_{1}, c_{2}, b_{1}, b_{2} \in\{0,1\}$, it holds that

$$
v=\operatorname{ext}\left(c_{1}, c_{2}\right) \Longleftrightarrow T_{b_{1}, b_{2}}(v)=\operatorname{ext}\left(c_{1} \oplus b_{1}, c_{2} \oplus b_{2}\right)
$$

Solution to the Sub-Problem

Goal

Prove that a secret bit z is of form $z=c_{1} \cdot c_{2}$, while remaining able to prove that the c_{1} and c_{2} satisfy other equations.

$$
v=\operatorname{ext}\left(c_{1}, c_{2}\right) \Longleftrightarrow T_{b_{1}, b_{2}}(v)=\operatorname{ext}\left(c_{1} \oplus b_{1}, c_{2} \oplus b_{2}\right)
$$

Solution to the Sub-Problem

Goal

Prove that a secret bit z is of form $z=c_{1} \cdot c_{2}$, while remaining able to prove that the c_{1} and c_{2} satisfy other equations.

$$
v=\operatorname{ext}\left(c_{1}, c_{2}\right) \Longleftrightarrow T_{b_{1}, b_{2}}(v)=\operatorname{ext}\left(c_{1} \oplus b_{1}, c_{2} \oplus b_{2}\right)
$$

- Extend $z=c_{1} \cdot c_{2}$ to $v=\operatorname{ext}\left(c_{1}, c_{2}\right)$

Solution to the Sub-Problem

Goal

Prove that a secret bit z is of form $z=c_{1} \cdot c_{2}$, while remaining able to prove that the c_{1} and c_{2} satisfy other equations.

$$
v=\operatorname{ext}\left(c_{1}, c_{2}\right) \Longleftrightarrow T_{b_{1}, b_{2}}(v)=\operatorname{ext}\left(c_{1} \oplus b_{1}, c_{2} \oplus b_{2}\right)
$$

- Extend $z=c_{1} \cdot c_{2}$ to $v=\operatorname{ext}\left(c_{1}, c_{2}\right)$
- Permute v: $T_{b_{1}, b_{2}}(v)$ for $b_{1}, b_{2} \hookleftarrow \mathcal{U}(\{0,1\})$

Solution to the Sub-Problem

Goal

Prove that a secret bit z is of form $z=c_{1} \cdot c_{2}$, while remaining able to prove that the c_{1} and c_{2} satisfy other equations.

$$
v=\operatorname{ext}\left(c_{1}, c_{2}\right) \Longleftrightarrow T_{b_{1}, b_{2}}(v)=\operatorname{ext}\left(c_{1} \oplus b_{1}, c_{2} \oplus b_{2}\right)
$$

- Extend $z=c_{1} \cdot c_{2}$ to $v=\operatorname{ext}\left(c_{1}, c_{2}\right)$
- Permute v: $T_{b_{1}, b_{2}}(v)$ for $b_{1}, b_{2} \hookleftarrow \mathcal{U}(\{0,1\})$
- same bits c_{1}, c_{2} appear in other equations \Rightarrow same masks b_{1}, b_{2}

Group Encryption: Putting Everything Together

Ingredients

- Anonymous encryption
- Signature scheme
- Supporting ZK proofs
+ Modular construction

[ABB10] IBE + [CHK04] transform

Group Encryption: Putting Everything Together

Ingredients

- Anonymous encryption
- Signature scheme
- Supporting ZK proofs
+ Modular construction

[ABB10] IBE + [CHK04] transform

- Our results (Libert-Ling-M-Nguyen-Wang, Asiacrypt'16):

■ Zero-Knowledge arguments for "quadratic relations":

$$
\mathrm{x} \cdot \mathrm{~s}+\mathrm{e}=\mathrm{b} \bmod q
$$

\rightarrow Building block for cryptography: may be of independent interest
■ First construction of group encryption from (classical) lattice assumptions proven secure in the standard model

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations
(Asiacrypt'17)

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt'16)

A signature scheme (Keygen, iign $_{\mathrm{sk}}$, Verif $_{\mathrm{vk}}$) with efficient protocols ${ }^{1}$:

- To sign a committed value;
- To prove possession of a signature.

${ }^{1}$ Camenisch-Lysyanskaya, SCN'02

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt’16)

A signature scheme (Keygen, Sign $_{\mathrm{sk}}$, Verif ${ }_{\mathrm{vk}}$) with efficient protocols ${ }^{1}$:

- To sign a committed value;
- To prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.
\rightarrow Many applications for privacy-based protocols.

${ }^{1}$ Camenisch-Lysyanskaya, SCN'02

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt’16)

A signature scheme (Keygen, Sign $_{\mathrm{sk}}$, Verif ${ }_{\mathrm{vk}}$) with efficient protocols ${ }^{1}$:

- To sign a committed value;
- To prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.
\rightarrow Many applications for privacy-based protocols.
X Existing constructions rely on Strong RSA assumption or bilinear maps.
${ }^{1}$ Camenisch-Lysyanskaya, SCN'02

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations
(Asiacrypt'17)

Adaptive Oblivious Transfer

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive

Adaptive Oblivious Transfer

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive

Adaptive Oblivious Transfer

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive
\rightarrow make queries anonymous and unlinkable

Adaptive Oblivious Transfer

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive
\rightarrow make queries anonymous and unlinkable
Extending expressiveness of Stern-like protocols
\Rightarrow First construction from lattices with access control

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations
(Asiacrypt'17)

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \widehat{\mathbb{G}}$ and \mathbb{G}_{T} be cyclic groups of prime order p.

$$
\begin{gathered}
e: \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_{T} \\
\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e\left(g^{a}, \hat{g}^{b}\right)=e(g, \hat{g})^{a b}
\end{gathered}
$$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \widehat{\mathbb{G}}$ and \mathbb{G}_{T} be cyclic groups of prime order p.

$$
\begin{gathered}
e: \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_{T} \\
\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e\left(g^{a}, \hat{g}^{b}\right)=e(g, \hat{g})^{a b}
\end{gathered}
$$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)
+ Pairings are more practical than lattices

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \widehat{\mathbb{G}}$ and \mathbb{G}_{T} be cyclic groups of prime order p.

$$
\begin{gathered}
e: \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_{T} \\
\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e\left(g^{a}, \hat{g}^{b}\right)=e(g, \hat{g})^{a b}
\end{gathered}
$$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)
+ Pairings are more practical than lattices
- Design supported by an open-source implementation in C
- Use Relic toolkit \Leftrightarrow Relic https://gforge.inria.fr/projects/sigmasig-c/

Conclusion

```
My Research so far
Around two axes:
    - (Privacy-preserving) protocol design
    - From pairings
    - From lattices
- Security proofs
```


Conclusion

My Research so far

Around two axes:

- (Privacy-preserving) protocol design
- From pairings
- From lattices
- Security proofs

Some disadvantages:
Adaptive OT Use of "LWE noise flooding"

Conclusion

My Research so far

Around two axes:

- (Privacy-preserving) protocol design
- From pairings
- From lattices
- Security proofs

Some disadvantages:
Adaptive OT Use of "LWE noise flooding"
Dynamic GS Use of lattice trapdoors

Conclusion

My Research so far

Around two axes:

- (Privacy-preserving) protocol design
- From pairings
- From lattices
- Security proofs

Some disadvantages:
Adaptive OT Use of "LWE noise flooding"
Dynamic GS Use of lattice trapdoors
Stern-like proofs Constant soundness error of $2 / 3$

Open Problems

Follow-ups

- Universally composable oblivious transfer from LWE?
- More efficient compact e-cash system?

Zero-knowledge proofs

- Negligible soundness error for expressive statements in lattices?
- NIZK for NP from LWE?

Cryptographic constructions

- More efficient signatures (compatible with ZK proofs)?
- Efficient trapdoor-free (H)IBE?

Thank you for your Attention

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16)

ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic
relations
(Asiacrypt'17)

What next? More protocol designs, zero-knowledge proofs and foundations of cryptographic constructions!

[^0]: ${ }^{1}$ Lyubashevsky, Asiacrypt'09
 ${ }^{2}$ Kawachi-Tanaka-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

[^1]: ${ }^{1}$ Lyubashevsky, Asiacrypt'09
 ${ }^{2}$ Kawachi-Tanaka-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

[^2]: ${ }^{1}$ Lyubashevsky, Asiacrypt'09
 ${ }^{2}$ Kawachi-Tanaka-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

[^3]: ${ }^{1}$ Bellare, Micciancio and Warinschi at Eurocrypt'03

[^4]: ${ }^{1}$ Bellare, Micciancio and Warinschi at Eurocrypt'03

[^5]: ${ }^{1}$ Bellare, Micciancio and Warinschi at Eurocrypt'03

[^6]: ${ }^{1}$ Bellare, Micciancio and Warinschi at Eurocrypt'03

[^7]: ${ }^{1}$ Bellare, Micciancio and Warinschi at Eurocrypt'03

