Privacy-Preserving Cryptography from Pairings and Lattices

Fabrice Mouhartem Under the supervision of Benoît Libert October 18th, 2018

École Normale Supérieure de Lyon, France

Important Goal

Allowing functionality while preserving anonymity

Important Goal

Allowing functionality while preserving anonymity

e.g. e-voting, e-cash, group signatures, group encryption, ...

Important Goal

Allowing functionality while preserving anonymity

e.g. e-voting, e-cash, group signatures, group encryption, ...

A user wants to take public transportations.

Authenticity & Integrity

- Authenticity & Integrity
- Anonymity

- Authenticity & Integrity
- Anonymity

► Dynamicity
$$i \longleftrightarrow$$
 Join

- Authenticity & Integrity
- Anonymity

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16) ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations (Asiacrypt'17)

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

Motivation: Firewall Filtering

► A user wants to send a message to a group behind a firewall

Motivation: Firewall Filtering

- ► A user wants to send a message to a group behind a firewall
- ► The recipient of the message can be a sensitive information

Motivation: Firewall Filtering

- ► A user wants to send a message to a group behind a firewall
- ► The recipient of the message can be a sensitive information
- ► Behind firewall: anonymity is lifted to route messages

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)
- 2013 Various improvements (El Aimani-Joye, ACNS'13)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)
- 2013 Various improvements (El Aimani-Joye, ACNS'13)
- 2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions
- 2009 Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)
- 2013 Various improvements (El Aimani-Joye, ACNS'13)
- 2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)
 - **X** Existing realizations rely on quantum-vulnerable assumptions

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- ► Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings (Cathalo-Libert-Yung, Asiacrypt'09)
- 2013 Various improvements (El Aimani-Joye, ACNS'13)
- 2014 Refined traceability mechanism (Libert-Yung-Peters-Joye, PKC'14)
 - **X** Existing realizations rely on quantum-vulnerable assumptions
- → From lattices: several realizations of group signatures: [GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LMN16, LLMN16]

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16) ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations (Asiacrypt'17)

Fabrice Mouhartem

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

Properties:

Message secrecy

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

- Message secrecy
- Receiver anonymity (within a group)

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

- Message secrecy
- Receiver anonymity (within a group)
- ► Soundness (⇒ traceability)

Applications

Firewall filtering, key recovery, anonymous cloud storage, ...

Definition

A set of algorithms or protocols: (Setup, Join, Enc, Dec, Open, $\langle \mathcal{P}, \mathcal{V} \rangle$)

- Message secrecy
- Receiver anonymity (within a group)
- ► Soundness (⇒ traceability)

Indistinguishability-based game

Indistinguishability-based game

Indistinguishability-based game

Indistinguishability-based game

A wins if b = b'

Fabrice Mouhartem

Hardness Assumptions: SIS and LWE (Ajtai 1996, Regev 2005)

Parameters: dimension *n*, #samples $m \ge n$, modulus *q*. For $A \leftrightarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})$:

Lattice-Based Cryptography (Ajtai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ▶ Powerful functionalities (e.g., FHE).

Lattice-Based Cryptography (Ajtai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ▶ Powerful functionalities (e.g., FHE).

Remark: GS and GE rely on the same building blocks:

- Digital signatures;
- ▶ Public-Key encryption;
- ► Supporting Zero-Knowledge proofs.

Lattice-Based Cryptography (Ajtai 1996, Regev 2005)

Why?

- Simple and asymptotically efficient;
- Conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ▶ Powerful functionalities (e.g., FHE).

Remark: GS and GE rely on the same building blocks:

- Digital signatures;
- ▶ Public-Key encryption;
- Supporting Zero-Knowledge proofs.

What is the main difficulty?

Interactive protocol between prover *P* and verifier *V* such that:

Completeness: Correctness of the protocol.

Interactive protocol between prover P and verifier V such that:

Completeness: Correctness of the protocol.

Soundness: No cheating prover can convince the verifier.

Interactive protocol between prover P and verifier V such that:

Completeness: Correctness of the protocol.

Soundness: No cheating prover can convince the verifier. Zero-Knowledge: Verifier learns nothing but the validity of the statement.

Interactive protocol between prover P and verifier V such that:

Completeness: Correctness of the protocol.

Soundness: No cheating prover can convince the verifier. Zero-Knowledge: Verifier learns nothing but the validity of the statement.

- ► Non-interactive variants: NIZK proofs
- Random Oracle: allows transforming ZK to NIZK (Fiat-Shamir, Crypto'86)
- Standard Model: using bilinear maps (Groth-Sahai, Eurocrypt'08)

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE¹, concise but not expressive.

Stern-like (Crypto'93): On LWE², heavy but expressive.

¹Lyubashevsky, Asiacrypt'09 ²Kawachi-Tanaka-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

Fabrice Mouhartem

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE¹, concise but not expressive.

Stern-like (Crypto'93): On LWE², heavy but expressive.

Both deal with "linear relations", i.e., of the form

X \cdot **S** = **Y** mod q

¹Lyubashevsky, Asiacrypt'09 ²Kawachi-Tanak-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

Fabrice Mouhartem

Two main proof systems in lattice-based cryptography:

Schnorr-like (Crypto'89): On Ring-LWE¹, concise but not expressive.

Stern-like (Crypto'93): On LWE², heavy but expressive.

Both deal with "linear relations", i.e., of the form

X \cdot **S** = **Y** mod q

Examples: (I)SIS and LWE relations are linear

²Kawachi-Tanaka-Xagawa, Asiacrypt'08 and Ling-Nguyen-Stehlé-Wang, PKC'13

Fabrice Mouhartem

¹Lyubashevsky, Asiacrypt'09

• GM issues a signature σ on *id* to each user

¹Bellare, Micciancio and Warinschi at Eurocrypt'03

Fabrice Mouhartem

- GM issues a signature σ on *id* to each user
- ► Sign:
 - a user encrypts *id* to c under OA's public key pk_{OA}

¹Bellare, Micciancio and Warinschi at Eurocrypt'03

Fabrice Mouhartem

- GM issues a signature σ on *id* to each user
- ► Sign:
 - a user encrypts *id* to c under OA's public key pk_{OA}
 - User proves that:
 - 1. He has a secret valid pair (*id*, σ), w.r.t. vk_{GM}
 - 2. **c** is a valid encryption of *id*, w.r.t. pk_{OA}

¹Bellare, Micciancio and Warinschi at Eurocrypt'03

- GM issues a signature σ on *id* to each user
- ► Sign:
 - a user encrypts *id* to c under OA's public key pk_{OA}
 - User proves that:
 - 1. He has a secret valid pair (id, σ) , w.r.t. vk_{GM} ISIS
 - 2. c is a valid encryption of *id*, w.r.t. pk_{OA} LWI
- ✓ Known techniques allow realizing the ZK proofs

¹Bellare, Micciancio and Warinschi at Eurocrypt'03

Fabrice Mouhartem

- GM issues a signature σ on *id* to each user
- ► Sign:
 - a user encrypts *id* to c under OA's public key pk_{OA}
 - User proves that:
 - 1. He has a secret valid pair (id, σ) , w.r.t. vk_{GM} ISIS
 - 2. c is a valid encryption of *id*, w.r.t. pk_{OA} LWI
- ✓ Known techniques allow realizing the ZK proofs

Remark: The message is embedded in the NIZK proof

¹Bellare, Micciancio and Warinschi at Eurocrypt'03

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} ; obtains c
- Sender also encrypts pk under pk_{OA}, obtains c_{OA}

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} ; obtains c
- Sender also encrypts pk under pk_{OA}, obtains c_{OA}
- Sender proves:
 - 1. $c = Enc_{pk}(\mu)$
 - 2. Knowledge of σ s.t. $\text{Verif}_{vk_{\text{GM}}}(\mathsf{pk}, \sigma)$; $c_{\text{OA}} = \text{Enc}_{\mathsf{pk}_{\text{OA}}}(\mathsf{pk})$; $\mathcal{R}(\mu) = \top$.

- Each member has an anonymous encryption key pair (pk, sk)
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} ; obtains c
- Sender also encrypts pk under pk_{OA}, obtains c_{OA}
- Sender proves:
 - 1. $C = Enc_{pk}(\mu)$
 - 2. Knowledge of σ s.t. $\text{Verif}_{vk_{\text{GM}}}(\mathsf{pk}, \sigma)$; $c_{\text{OA}} = \text{Enc}_{\mathsf{pk}_{\text{OA}}}(\mathsf{pk})$; $\mathcal{R}(\mu) = \top$.
- **X** We have to handle relations with **hidden-but-certified** matrix:

$$\mathbf{X} \cdot \mathbf{S} + \mathbf{e} = \mathbf{b} \mod q$$

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Kawachi-Tanaka-Xagawa'08: mod $2 \rightarrow \mod q$

Ling-Nguyen-Stehlé-Wang'13: Extends Stern's protocol to SIS/LWE

Recent uses of Stern-like protocols in lattice-based crypto: [LNW15, LLNW16, LMN16, LLNMW16, LLNMW17, LLNW17]

Fabrice Mouhartem

Stern's Ideas

Syndrome Decoding Problem

Given
$$\mathbf{P} \in \mathbb{Z}_2^{n \times m}$$
 and $\mathbf{V} \in \mathbb{Z}_2^n$, find \mathbf{x} s.t. $w(\mathbf{x}) = w$ and $\mathbf{P} \cdot \mathbf{X} = \mathbf{V} \mod 2$

Stern's Ideas

Syndrome Decoding Problem

Given
$$\mathbf{P} \in \mathbb{Z}_2^{n \times m}$$
 and $\mathbf{V} \in \mathbb{Z}_2^n$, find \mathbf{x} s.t. $w(\mathbf{x}) = w$ and $\mathbf{P} \cdot \mathbf{X} = \mathbf{V} \mod 2$

- 1. Permuting: Random permutation proves constraints on X
 - Send the verifier $\pi(\mathbf{x})$
 - x binary of hamming weight $w \Leftrightarrow \pi(\mathbf{x})$ does
 - $\mathbf{w} \pi$'s randomness preserves the secrecy of x

Syndrome Decoding Problem

Given
$$\mathbf{P} \in \mathbb{Z}_2^{n \times m}$$
 and $\mathbf{V} \in \mathbb{Z}_2^n$, find \mathbf{X} s.t. $w(\mathbf{X}) = w$ and $\mathbf{P} \cdot \mathbf{X} = \mathbf{V} \mod 2$

- 1. Permuting: Random permutation proves constraints on X
 - Send the verifier $\pi(\mathbf{x})$
 - x binary of hamming weight $w \Leftrightarrow \pi(\mathbf{x})$ does
 - $\mathbf{w} \pi$'s randomness preserves the secrecy of x
- 2. Masking: Random mask r is used to prove the linear equation
 - Send the verifier $\mathbf{y} = \mathbf{x} + \mathbf{r}$ and show that $\mathbf{P} \cdot \mathbf{y} = \mathbf{V} + \mathbf{P} \cdot \mathbf{r}$

Syndrome Decoding Problem

Given
$$\mathbf{P} \in \mathbb{Z}_2^{n \times m}$$
 and $\mathbf{V} \in \mathbb{Z}_2^n$, find \mathbf{x} s.t. $w(\mathbf{x}) = w$ and $\mathbf{P} \cdot \mathbf{X} = \mathbf{V} \mod 2$

1. Permuting: Random permutation proves constraints on X

- Send the verifier $\pi(\mathbf{x})$
- x binary of hamming weight $w \Leftrightarrow \pi(\mathbf{x})$ does

 $\mathbf{w} \pi$'s randomness preserves the secrecy of x

2. Masking: Random mask r is used to prove the linear equation

Send the verifier $\mathbf{y} = \mathbf{x} + \mathbf{r}$ and show that $\mathbf{P} \cdot \mathbf{y} = \mathbf{V} + \mathbf{P} \cdot \mathbf{r}$

Idea:

- 1. Pre-process the given quadratic relation
- 2. Exploit permutations to prove the relation

Goal: Express $X \cdot s$ as $Q \cdot z$

Idea: Binary decomposition

1. $\mathbf{X} \cdot \mathbf{s} = \sum_{i=1}^{n} \mathbf{x}_i \cdot \mathbf{s}_i$

x_{*i*} denotes *i*-th column of **X**; **s**_{*i*} is the *i*-th component of **s**

Goal: Express X · S as Q · Z

Idea: Binary decomposition

1. $\mathbf{X} \cdot \mathbf{s} = \sum_{i=1}^{n} \mathbf{x}_i \cdot \mathbf{s}_i$

x_i denotes *i*-th column of **X**; **s**_i is the *i*-th component of **s**

2.
$$\mathbf{x}_i \cdot \mathbf{s}_i = \mathbf{H} \cdot (\mathbf{x}_{i,1} \cdot \mathbf{s}_i, \dots, \mathbf{x}_{i,mk} \cdot \mathbf{s}_i)^T$$

 $k = \lceil \log q \rceil; \mathbf{H} \text{ is the decomposition matrix } \mathbb{Z}_q^m \to \{0, 1\}^{mk}$

Goal: Express X · S as Q · Z

Idea: Binary decomposition

1. $\mathbf{X} \cdot \mathbf{s} = \sum_{i=1}^{n} \mathbf{x}_i \cdot \mathbf{s}_i$

x_i denotes *i*-th column of **X**; **s**_i is the *i*-th component of **s**

2.
$$\mathbf{x}_i \cdot \mathbf{s}_i = \mathbf{H} \cdot (\mathbf{x}_{i,1} \cdot \mathbf{s}_i, \dots, \mathbf{x}_{i,mk} \cdot \mathbf{s}_i)^T$$

 $k = \lceil \log q \rceil; \mathbf{H} \text{ is the decomposition matrix } \mathbb{Z}_q^m \to \{0, 1\}^{mk}$
3. $\mathbf{x}_{i,j} \cdot \mathbf{s}_i = \mathbf{x}_{i,j} \cdot (\tilde{h}_1, \dots, \tilde{h}_k) \cdot (\mathbf{s}_{i,1}, \dots, \mathbf{s}_{i,k})^T$
 $= (\tilde{h}_1, \dots, \tilde{h}_k) \cdot (\mathbf{x}_{i,j} \cdot \mathbf{s}_{i,1}, \dots, \mathbf{x}_{i,j} \cdot \mathbf{s}_{i,k})^T.$

Goal: Express $X \cdot s$ as $Q \cdot z$

Idea: Binary decomposition

1. $\mathbf{X} \cdot \mathbf{s} = \sum_{i=1}^{n} \mathbf{x}_i \cdot \mathbf{s}_i$

x_i denotes *i*-th column of **X**; **s**_i is the *i*-th component of **s**

2.
$$\mathbf{x}_i \cdot \mathbf{s}_i = \mathbf{H} \cdot (\mathbf{x}_{i,1} \cdot \mathbf{s}_i, \dots, \mathbf{x}_{i,mk} \cdot \mathbf{s}_i)^T$$

 $k = \lceil \log q \rceil; \mathbf{H} \text{ is the decomposition matrix } \mathbb{Z}_q^m \rightarrow \{0, 1\}^{mk}$
3. $\mathbf{x}_{i,j} \cdot \mathbf{s}_i = \mathbf{x}_{i,j} \cdot (\tilde{h}_1, \dots, \tilde{h}_k) \cdot (\mathbf{s}_{i,1}, \dots, \mathbf{s}_{i,k})^T$
 $= (\tilde{h}_1, \dots, \tilde{h}_k) \cdot (\mathbf{x}_{i,j} \cdot \mathbf{s}_{i,1}, \dots, \mathbf{x}_{i,j} \cdot \mathbf{s}_{i,k})^T.$

 $\begin{aligned} \mathbf{x}_{i,j} \cdot \mathbf{s}_i \text{ has form "(public matrix)} \cdot (\text{secret vector})" \Rightarrow \text{ so does } \mathbf{x}_i \cdot \mathbf{s}_i \\ \Rightarrow \text{ so does } \mathbf{X} \cdot \mathbf{S} = \mathbf{Q} \cdot \mathbf{Z} \mod q \end{aligned}$

Fabrice Mouhartem

We expressed $\mathbf{X} \cdot \mathbf{s}$ as $\mathbf{Q} \cdot \mathbf{z}$.

z is binary and quadratic: each z_i is a product of a bit from X with a bit from s

We expressed $\mathbf{X} \cdot \mathbf{s}$ as $\mathbf{Q} \cdot \mathbf{z}$.

- z is binary and quadratic: each z_i is a product of a bit from X with a bit from s
- ► The component bits additionally satisfy other relations

We expressed
$$\mathbf{X} \cdot \mathbf{s}$$
 as $\mathbf{Q} \cdot \mathbf{z}$.

z is binary and quadratic: each z_i is a product of a bit from X with a bit from s

► The component bits additionally satisfy other relations

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while remaining able to prove that the c_1 and c_2 satisfy other equations.

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

For $c \in \{0, 1\}$ let $\overline{c} = 1 - c$. For $c_1, c_2 \in \{0, 1\}$, define

 $\operatorname{ext}(c_1, c_2) = (\overline{c}_1 \cdot \overline{c}_2, \overline{c}_1 \cdot c_2, c_1 \cdot \overline{c}_2, c_1 \cdot c_2)^T$

Deal with Quadratic Relations: Second Step

Idea: Two-bit-based permutations

► For $c \in \{0, 1\}$ let $\bar{c} = 1 - c$. For $c_1, c_2 \in \{0, 1\}$, define $ext(c_1, c_2) = (\bar{c}_1 \cdot \bar{c}_2, \bar{c}_1 \cdot c_2, c_1 \cdot \bar{c}_2, c_1 \cdot c_2)^T$

For $b_1, b_2 \in \{0, 1\}$, define the permutation T_{b_1, b_2} :

 $T_{b_1,b_2}\left((v_{0,0},v_{0,1},v_{1,0},v_{1,1})^T\right) = (v_{b_1,b_2},v_{b_1,\bar{b}_2},v_{\bar{b}_1,\bar{b}_2},v_{\bar{b}_1,\bar{b}_2})^T$

Fabrice Mouhartem

Idea: Two-bit-based permutations

► For $c \in \{0, 1\}$ let $\bar{c} = 1 - c$. For $c_1, c_2 \in \{0, 1\}$, define $ext(c_1, c_2) = (\bar{c}_1 \cdot \bar{c}_2, \bar{c}_1 \cdot c_2, c_1 \cdot \bar{c}_2, c_1 \cdot c_2)^T$

For $b_1, b_2 \in \{0, 1\}$, define the permutation T_{b_1, b_2} :

$$T_{b_1,b_2}\left(\left(v_{0,0},v_{0,1},v_{1,0},v_{1,1}\right)^T\right) = \left(v_{b_1,b_2},v_{b_1,\bar{b}_2},v_{\bar{b}_1,b_2},v_{\bar{b}_1,\bar{b}_2}\right)^T$$

Note that for all $c_1, c_2, b_1, b_2 \in \{0, 1\}$, it holds that

$$\mathbf{v} = \operatorname{ext}(\mathbf{c}_1, \mathbf{c}_2) \iff T_{b_1, b_2}(\mathbf{v}) = \operatorname{ext}(\mathbf{c}_1 \oplus \mathbf{b}_1, \mathbf{c}_2 \oplus \mathbf{b}_2)$$

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while remaining able to prove that the c_1 and c_2 satisfy other equations.

 $v = \text{ext}(c_1, c_2) \iff T_{b_1, b_2}(v) = \text{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while remaining able to prove that the c_1 and c_2 satisfy other equations.

$$\mathbf{v} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

• Extend
$$z = c_1 \cdot c_2$$
 to $v = ext(c_1, c_2)$

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while remaining able to prove that the c_1 and c_2 satisfy other equations.

$$\mathbf{v} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

• Extend
$$z = c_1 \cdot c_2$$
 to $v = ext(c_1, c_2)$

• Permute **v**:
$$T_{b_1,b_2}(\mathbf{v})$$
 for $b_1, b_2 \leftrightarrow \mathcal{U}(\{0,1\})$

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while remaining able to prove that the c_1 and c_2 satisfy other equations.

$$\mathbf{v} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

• Extend
$$z = c_1 \cdot c_2$$
 to $v = ext(c_1, c_2)$

▶ Permute **v**: $T_{b_1,b_2}(\mathbf{v})$ for $b_1, b_2 \leftrightarrow \mathcal{U}(\{0,1\})$

▶ same bits c_1, c_2 appear in other equations \Rightarrow same masks b_1, b_2

Group Encryption: Putting Everything Together

Ingredients

- ► Anonymous encryption
- ► Signature scheme
- ► Supporting ZK proofs
- + Modular construction

[ABB10] IBE + [CHK04] transform [LLMNW16] [Presented result] [KTY07]

Group Encryption: Putting Everything Together

Ingredients

- ► Anonymous encryption
- ► Signature scheme
- Supporting ZK proofs
- + Modular construction

[ABB10] IBE + [CHK04] transform [LLMNW16] [Presented result] [KTY07]

- Our results (Libert-Ling-M-Nguyen-Wang, Asiacrypt'16):
 - Zero-Knowledge arguments for "quadratic relations":

$$\mathbf{X} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q.$$

- ightarrow Building block for cryptography: may be of independent interest
 - First construction of group encryption from (classical) lattice assumptions proven secure in the standard model

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16) ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations (Asiacrypť17)

Fabrice Mouhartem

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt'16)

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with efficient protocols¹:

- ► To sign a committed value;
- ► To prove possession of a signature.

¹Camenisch-Lysyanskaya, SCN'02

Fabrice Mouhartem

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt'16)

A signature scheme (Keygen, Sign_{sk}, Verif_{vk}) with efficient protocols¹:

- ► To sign a committed value;
- ► To **prove** possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.

 \rightarrow Many applications for privacy-based protocols.

¹Camenisch-Lysyanskaya, SCN'02

First Lattice-Based Signature with Efficient Protocols

(Libert-Ling-M-Nguyen-Wang, Asiacrypt'16)

A signature scheme (Keygen, Sign_{sk}, Verif_{vk}) with efficient protocols¹:

- ► To sign a committed value;
- ► To **prove** possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.
- \rightarrow Many applications for privacy-based protocols.

✗ Existing constructions rely on Strong RSA assumption or bilinear maps.

¹Camenisch-Lysyanskaya, SCN'02

Fabrice Mouhartem

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16) ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations (Asiacrypť17)

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

DNA storage is expensive

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive
- → make queries anonymous and unlinkable

(Naor-Pinkas, Crypto'99; Libert-Ling-M-Nguyen-Wang, Asiacrypt'17)

- DNA storage is expensive
- DNA Database queries are sensitive
- → make queries anonymous and unlinkable

Extending expressiveness of Stern-like protocols \Rightarrow First construction from lattices with access control

Fabrice Mouhartem

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

Outline

Practical group signature (AsiaCCS'16)

Pairings

First lattice-based signature with efficient protocols (Asiacrypt'16) ZK argument of correct evaluation of committed branching programs (Asiacrypt'16)

Lattices

ZK argument for quadratic relations (Asiacrypt'17)

PRIVACY-PRESERVING CRYPTOGRAPHY FROM PAIRINGS AND LATTICES

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \hat{\mathbb{G}}$ and \mathbb{G}_T be cyclic groups of prime order p. $e : \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_T$ $\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e(g^a, \hat{g}^b) = e(g, \hat{g})^{ab}$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \hat{\mathbb{G}}$ and \mathbb{G}_T be cyclic groups of prime order p. $e : \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_T$ $\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e(g^a, \hat{g}^b) = e(g, \hat{g})^{ab}$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)
- + Pairings are more practical than lattices

Practical Group Signatures from Pairing Assumptions

(Libert-M-Peters-Yung, AsiaCCS'16)

Pairing

Let $\mathbb{G}, \hat{\mathbb{G}}$ and \mathbb{G}_T be cyclic groups of prime order p. $e : \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_T$ $\forall g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}, a, b \in \mathbb{Z}, e(g^a, \hat{g}^b) = e(g, \hat{g})^{ab}$

Hardness relies on (variant of) Decision Diffie-Hellman

- Pairings are not quantum-resistant (Shor 1999)
- + Pairings are more practical than lattices
- Design supported by an open-source implementation in C
- Use Relic toolkit Relic with the relic toolkit

https://gforge.inria.fr/projects/sigmasig-c/

My Research so far

Around two axes:

From lattices

► Security proofs

My Research so far

Around two axes:

(Privacy-preserving) protocol designFrom pairings

From lattices

► Security proofs

Some disadvantages:

Adaptive OT Use of "LWE noise flooding"

My Research so far

Around two axes:

(Privacy-preserving) protocol design
 From pairings

From lattices

► Security proofs

Some disadvantages:

Adaptive OT Use of "LWE noise flooding"

Dynamic GS Use of lattice trapdoors

My Research so far

Around two axes:

(Privacy-preserving) protocol design
 From pairings

- From lattices
- Security proofs

Some disadvantages:

Adaptive OT Use of "LWE noise flooding"

Dynamic GS Use of lattice trapdoors

Stern-like proofs Constant soundness error of 2/3

Follow-ups

- Universally composable oblivious transfer from LWE?
- More efficient compact e-cash system?

Zero-knowledge proofs

- ▶ Negligible soundness error for expressive statements in lattices?
- ► NIZK for NP from LWE?

Cryptographic constructions

- ► More efficient signatures (compatible with ZK proofs)?
- ► Efficient trapdoor-free (H)IBE?

Thank you for your Attention

What next? More protocol designs, zero-knowledge proofs and foundations of cryptographic constructions!

Fabrice Mouhartem