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Privacy-Preserving Cryptography

Goal: Provide functionalities while keeping users anonymous

Examples: Group Signatures, Anonymous Credentials, e-Cash, . . .

Main ingredients:

I Digital signatures;

I Public-Key encryption;

I Supporting Zero-Knowledge proofs.
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Lattice-Based Cryptography [Ajt96, Reg05]

Lattice
A lattice is a discrete subgroup of Rn. Can be seen as integer linear
combinations of a finite set of vectors.

Λ(b1, . . . , bn) =
{∑

i≤n aibi | ai ∈ Z
}

Why?

I Simple and asymptotically efficient;

I Still conjectured quantum-resistant;

I Connection between average-case and
worst-case problems;

I Powerful functionalities (e.g., FHE).

→ Finding a short non-zero vector in a lattice is hard.
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Hardness Assumptions: SIS and LWE [Ajt96, Reg05]

Small Integer Solution Learning With Errors

x

A = 0 [q] Am

n

, A
s
+ e

s ←↩ Zn
q e small error

Goal: Given A ∈ Zm×n
q , find

x ∈ Zm\{0} small
Goal: Given

(
A , A s + e

)
,

find s ∈ Zn
q
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Firewall Filtering [LYJP14]

I A user wants to send a message to a group behind a firewall

I The recipient of the message can be a sensitive information

I The router can lift anonymity to route messages
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Group Encryption [KTY07]

Group encryption allows encrypting while proving that:

1. The ciphertext is well-formed and intended for some registered group
member who will be able to decrypt;

2. The opening authority will be able identify the receiver if necessary;

3. The plaintext satisfies certain properties.

Possible applications

I Firewall filtering

I Anonymous trusted third parties

I Cloud storage services

I Hierarchical group signatures [TW05]
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Group Encryption vs Group Signatures

Encryption analogue of group signatures.

Group signatures [CvH91]: Group users can anonymously sign messages
on behalf of the whole group.

Group encryption [KTY07]: Sender can encrypt a message to an
anonymous group member.

Accountability
Group members are kept accountable for their actions: an opening
authority can un-anonymize the signatures/ciphertexts if necessary.
needs arise.
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History

2007 Introduction of group encryption by Kiayias, Tsiounis and Yung
I Modular design from anonymous PKE, signatures and

interactive ZK proofs

I Instantiation using number-theoretic assumptions

2009 Non-interactive GE in the standard model from pairings by
Cathalo, Libert and Yung

2013 Various improvements from El Aimani and Joye

2014 Refined traceability mechanism from Libert, Yung, Peters and
Joye.

7 All existing realizations of GE rely on number-theoretic assumptions

? Construction from other assumptions, e.g., lattice-based?
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Outline

Introduction

Toward Realizing Group Encryption

Zero-Knowledge Arguments for Group Encryption
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In the Lattice-Based World

Remark
Group signatures and group encryption rely on the same building blocks

I Digital signatures;

I Public-Key encryption;

I Supporting Zero-Knowledge proofs.

However, there are several realizations of group signatures:
[GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LNM16, LLMN16]

? What is the main difficulty?
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Zero-Knowledge Proofs for Lattices

Two main proof systems in lattice-based cryptography:

Schnorr-like [Sch89]: On Ring-LWE [Lyu08], concise but not expressive.
Algebraic

Stern-like [Ste93]: On LWE, heavy but expressive.
Combinatorial

Both deal with “linear relations”, i.e., of the form

X · s = y mod q

Examples: (I)SIS and LWE relations are linear
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The Case of Group Signatures

A modular design for GS [BMW03]: sign-then-encrypt-then-prove

I Each user has a signature σ on its identity id issued by the group
manager (GM)

I To generate a signature, the user encrypts id to c under opening
authority (OA) public key

I Then, user proves that:

1. He has a secret valid pair (id , σ), w.r.t. vkGM

ISIS

2. c is a valid encryption of id , w.r.t. pkOA

LWE

3 Known techniques allow realizing the ZK proofs
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Main Difficulty in Group Encryption

A modular design [KTY07]:

I Each member has a key pair (pk, sk) for an anonymous encryption
scheme

I GM signs each pk and publishes (pk, σ)

I Sender uses pk to encrypt a message µ satisfying R, obtains c
I Sender also encrypts pk under pkOA, obtains cOA

I Then, sender proves that:
1. c is a correct encryption of some message µ under some pk
2. Sender knows a valid signature σ on pk, w.r.t. vkGM; cOA is a

correct encryption of pk, w.r.t. pkOA; µ satisfies R.

We have to handle relations with hidden-but-certified matrix:

X · s + e = b mod q

We call this “quadratic relations”.
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Zero-Knowledge Arguments for
Group Encryption
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Stern’s Protocol [Ste93]

Stern’s protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given P ∈ Zn×m
2 and v ∈ Zn

2, find x s.t. w( x ) = w and

P

m

n

x =
v

mod 2

[KTX08]: mod 2→ mod q

[LNSW13]: Extends Stern’s protocol for SIS and LWE statements

Recent uses of Stern-like protocols in lattice-based crypto:
[LNW15, LLNW16, LMN16, LLNMW16, LLNMW17, LLNW17]
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Stern’s Ideas

Syndrome Decoding Problem

Given P ∈ Zn×m
2 and v ∈ Zn

2, find x s.t. w( x ) = w and

P · x = v mod 2

1. Permuting: Proving the witness constraint using random
permutation

Send the verifier π( x )

x is binary of hamming weight w iff π( x ) does
+ The randomness of π protects the value of x

2. Masking: Proving linear equation using a random mask r
Send the verifier y = x + r and show that P · y = v + P · r

Idea: We will
2.1 Pre-process the given quadratic relation
2.2 Exploit permuting to prove the relation
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Dealing with Quadratic Relations: First Step

Goal: Express X · s as Q · z

Idea: Binary decomposition

I z is still quadratic: each zi is a product of a bit from X with a
bit from s

I The component bits additionally satisfy other relations

Goal
Prove that a secret bit z is of form z = c1 · c2, while preserving the
possibility to show that the component bits c1 and c2 satisfy other
equations.
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Dealing with Quadratic Relations: Second Step

Goal
Prove that a secret bit z is of form z = c1 · c2, while preserving the
possibility to show that the component bits c1 and c2 satisfy other
equations.

Idea: Two-bit based permutations
Define bit-extension ext(·, ·) and permutation Tb1,b2(·) s.t.

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

1. Extend z = c1 · c2 to v = ext(c1, c2)
2. Permute v with random bits b1, b2, and give the verifier the

permuted vector Tb1,b2(v)
3. To prove that the same bits c1, c2 appear in other equations: set up

similar mechanisms at their other appearances, and use the same
b1, b2.
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b1, b2.
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possibility to show that the component bits c1 and c2 satisfy other
equations.

Idea: Two-bit based permutations
Define bit-extension ext(·, ·) and permutation Tb1,b2(·) s.t.

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

1. Extend z = c1 · c2 to v = ext(c1, c2)
2. Permute v with random bits b1, b2, and give the verifier the

permuted vector Tb1,b2(v)

3. To prove that the same bits c1, c2 appear in other equations: set up
similar mechanisms at their other appearances, and use the same
b1, b2.

Fabrice Mouhartem ZK Argument for Matrix-Vector Relations and Lattice-Based GE 11/10/2018 18/20



Dealing with Quadratic Relations: Second Step

Goal
Prove that a secret bit z is of form z = c1 · c2, while preserving the
possibility to show that the component bits c1 and c2 satisfy other
equations.

Idea: Two-bit based permutations
Define bit-extension ext(·, ·) and permutation Tb1,b2(·) s.t.

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2)

1. Extend z = c1 · c2 to v = ext(c1, c2)
2. Permute v with random bits b1, b2, and give the verifier the

permuted vector Tb1,b2(v)
3. To prove that the same bits c1, c2 appear in other equations: set up

similar mechanisms at their other appearances, and use the same
b1, b2.

Fabrice Mouhartem ZK Argument for Matrix-Vector Relations and Lattice-Based GE 11/10/2018 18/20



Group Encryption: Putting Everything Together

Ingredients

I Anonymous encryption [ABB10] IBE + [CHK04] transform

I Signature scheme [LLMNW16]

I Supporting ZK proofs [This Talk]

[KTY07]’s modular construction ⇒ first group encryption construction
from (classical) lattice assumptions proven secure in the standard model
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Conclusion

I Our results:
Zero-Knowledge arguments for “quadratic relations”:

X · s + e = b mod q.

→ Building block for cryptography: may be of independent interest
First lattice-based group encryption scheme
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Questions?
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