Zero-Knowledge Arguments for Matrix-Vector Relations and Lattice-Based Group Encryption

Benoît Libert^{1,3} San Ling² Fabrice Mouhartem¹ Khoa Nguyen² Huaxiong Wang² Journées C2 2018, 11 octobre 2018

¹École Normale Supérieure de Lyon

²Nanyang Technological University

³CNRS

Privacy-Preserving Cryptography

Goal: Provide functionalities while keeping users anonymous

Privacy-Preserving Cryptography

Goal: Provide functionalities while keeping users anonymous **Examples:** Group Signatures, Anonymous Credentials, e-Cash, ...

Privacy-Preserving Cryptography

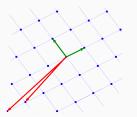
Goal: Provide functionalities while keeping users anonymousExamples: Group Signatures, Anonymous Credentials, e-Cash, ...Main ingredients:

- Digital signatures;
- Public-Key encryption;
- ► Supporting Zero-Knowledge proofs.

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

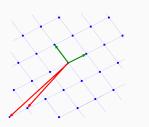
$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}\right\}$$



Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}\right\}$$



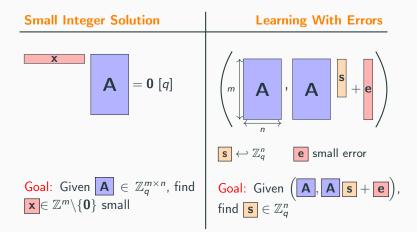
Why?

- Simple and asymptotically efficient;
- Still conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ▶ Powerful functionalities (e.g., FHE).

 \rightarrow Finding a short non-zero vector in a lattice is hard.

Fabrice Mouhartem

Hardness Assumptions: SIS and LWE [Ait96, Reg05]



4/20

Firewall Filtering [LYJP14]

► A user wants to send a message to a group behind a firewall

Firewall Filtering [LYJP14]

- ► A user wants to send a message to a group behind a firewall
- ► The recipient of the message can be a sensitive information

Firewall Filtering [LYJP14]

- ► A user wants to send a message to a group behind a firewall
- ► The recipient of the message can be a sensitive information
- ► The router can lift anonymity to route messages

Group encryption allows encrypting while proving that:

- 1. The ciphertext is well-formed and intended for some registered group member who will be able to decrypt;
- 2. The opening authority will be able identify the receiver if necessary;
- 3. The plaintext satisfies certain properties.

Group encryption allows encrypting while proving that:

- 1. The ciphertext is well-formed and intended for some registered group member who will be able to decrypt;
- 2. The opening authority will be able identify the receiver if necessary;
- 3. The plaintext satisfies certain properties.

Possible applications

- ► Firewall filtering
- Anonymous trusted third parties
- Cloud storage services
- ► Hierarchical group signatures [TW05]

6/20

Encryption analogue of group signatures.

7/20

Encryption analogue of group signatures.

Group signatures [CvH91]: Group users can anonymously sign messages on behalf of the whole group.

Group encryption [KTY07]: Sender can encrypt a message to an anonymous group member.

Encryption analogue of group signatures.

Group signatures [CvH91]: Group users can anonymously sign messages on behalf of the whole group.

Group encryption [KTY07]: Sender can encrypt a message to an anonymous group member.

Accountability

Group members are kept accountable for their actions: an opening authority can un-anonymize the signatures/ciphertexts if necessary. needs arise.

 $2007\,$ Introduction of group encryption by Kiayias, Tsiounis and Yung

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions

2007 Introduction of group encryption by Kiayias, Tsiounis and Yung

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings by Cathalo, Libert and Yung

2007 Introduction of group encryption by Kiayias, Tsiounis and Yung

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings by Cathalo, Libert and Yung
- 2013 Various improvements from El Aimani and Joye

2007 Introduction of group encryption by Kiayias, Tsiounis and Yung

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings by Cathalo, Libert and Yung
- 2013 Various improvements from El Aimani and Joye
- **2014** Refined traceability mechanism from Libert, Yung, Peters and Joye.

 $2007\,$ Introduction of group encryption by Kiayias, Tsiounis and Yung

- Modular design from anonymous PKE, signatures and interactive ZK proofs
- Instantiation using number-theoretic assumptions
- **2009** Non-interactive GE in the standard model from pairings by Cathalo, Libert and Yung
- 2013 Various improvements from El Aimani and Joye
- **2014** Refined traceability mechanism from Libert, Yung, Peters and Joye.

- \checkmark All existing realizations of GE rely on number-theoretic assumptions
- ? Construction from other assumptions, e.g., lattice-based?

Fabrice Mouhartem

Introduction

Toward Realizing Group Encryption

Zero-Knowledge Arguments for Group Encryption

Remark

Group signatures and group encryption rely on the same building blocks

- Digital signatures;
- Public-Key encryption;
- Supporting Zero-Knowledge proofs.

Remark

Group signatures and group encryption rely on the same building blocks

- Digital signatures;
- Public-Key encryption;
- Supporting Zero-Knowledge proofs.

However, there are several realizations of group signatures: [GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LNM16, LLMN16]

Remark

Group signatures and group encryption rely on the same building blocks

- Digital signatures;
- Public-Key encryption;
- Supporting Zero-Knowledge proofs.

However, there are several realizations of group signatures: [GKV10, CNR12, LLLS13, NNZ15, LNW15, LLNW16, LNM16, LLMN16]

? What is the main difficulty?

Two main proof systems in lattice-based cryptography:

Schnorr-like [Sch89]: On Ring-LWE [Lyu08], concise but not expressive. Algebraic

Stern-like [Ste93]: On LWE, heavy but expressive. Combinatorial Two main proof systems in lattice-based cryptography:

Schnorr-like [Sch89]: On Ring-LWE [Lyu08], concise but not expressive. Algebraic

Stern-like [Ste93]: On LWE, heavy but expressive. Combinatorial

Both deal with "linear relations", i.e., of the form

 $\mathbf{X} \cdot \mathbf{s} = \mathbf{y} \mod q$

Two main proof systems in lattice-based cryptography:

Schnorr-like [Sch89]: On Ring-LWE [Lyu08], concise but not expressive. Algebraic

Stern-like [Ste93]: On LWE, heavy but expressive. Combinatorial

Both deal with "linear relations", i.e., of the form

 $\mathbf{X} \cdot \mathbf{s} = \mathbf{y} \mod q$

Examples: (I)SIS and LWE relations are linear

Each user has a signature σ on its identity *id* issued by the group manager (GM)

12/20

- Each user has a signature σ on its identity *id* issued by the group manager (GM)
- To generate a signature, the user encrypts *id* to c under opening authority (OA) public key

- Each user has a signature σ on its identity *id* issued by the group manager (GM)
- ► To generate a signature, the user encrypts *id* to **c** under opening authority (OA) public key
- ► Then, user proves that:
 - 1. He has a secret valid pair (id, σ) , w.r.t. vk_{GM}
 - 2. **c** is a valid encryption of *id*, w.r.t. pk_{OA}

- Each user has a signature σ on its identity *id* issued by the group manager (GM)
- ► To generate a signature, the user encrypts *id* to **c** under opening authority (OA) public key
- ► Then, user proves that:
 - 1. He has a secret valid pair (id, σ) , w.r.t. vk_{GM} ISIS
 - 2. **c** is a valid encryption of *id*, w.r.t. pk_{OA} LWE

✓ Known techniques allow realizing the ZK proofs

- Each member has a key pair (pk, sk) for an anonymous encryption scheme
- GM signs each pk and publishes (pk, σ)

13/20

- Each member has a key pair (pk, sk) for an anonymous encryption scheme
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} , obtains c
- Sender also encrypts pk under pk_{OA} , obtains c_{OA}

- Each member has a key pair (pk, sk) for an anonymous encryption scheme
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} , obtains c
- Sender also encrypts pk under pk_{OA}, obtains c_{OA}
- ► Then, sender proves that:
 - 1. **c** is a correct encryption of some message μ under some **pk**
 - Sender knows a valid signature σ on pk, w.r.t. vk_{GM}; c_{OA} is a correct encryption of pk, w.r.t. pk_{OA}; μ satisfies R.

- Each member has a key pair (pk, sk) for an anonymous encryption scheme
- GM signs each pk and publishes (pk, σ)
- Sender uses pk to encrypt a message μ satisfying \mathcal{R} , obtains c
- Sender also encrypts pk under pk_{OA}, obtains c_{OA}
- ► Then, sender proves that:
 - 1. c is a correct encryption of some message μ under some pk
 - 2. Sender knows a valid signature σ on pk, w.r.t. vk_{GM}; c_{OA} is a correct encryption of pk, w.r.t. pk_{OA}; μ satisfies \mathcal{R} .

We have to handle relations with hidden-but-certified matrix:

$$\mathbf{X} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$

We call this "quadratic relations".

Zero-Knowledge Arguments for Group Encryption

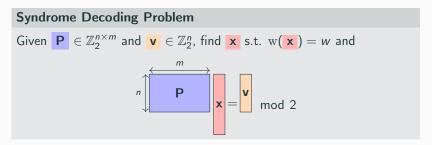
Stern's Protocol [Ste93]

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

15/20

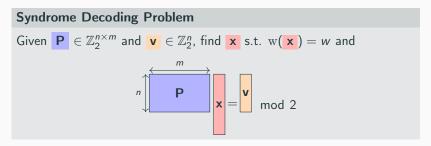
Stern's Protocol [Ste93]

Stern's protocol is a ZK proof for Syndrome Decoding Problem.



Stern's Protocol [Ste93]

Stern's protocol is a ZK proof for Syndrome Decoding Problem.



[KTX08]: mod $2 \rightarrow \mod q$

[LNSW13]: Extends Stern's protocol for SIS and LWE statements

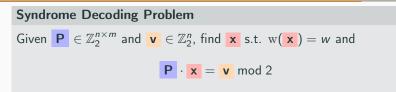
Recent uses of Stern-like protocols in lattice-based crypto: [LNW15, LLNW16, LMN16, LLNMW16, LLNMW17, LLNW17]

Fabrice Mouhartem

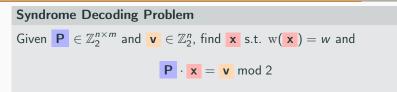
ZK Argument for Matrix-Vector Relations and Lattice-Based GE 11/10/2018 15/20

Syndrome Decoding Problem Given $\mathbf{P} \in \mathbb{Z}_2^{n \times m}$ and $\mathbf{v} \in \mathbb{Z}_2^n$, find \mathbf{x} s.t. $w(\mathbf{x}) = w$ and $\mathbf{P} \cdot \mathbf{x} = \mathbf{v} \mod 2$

16/20



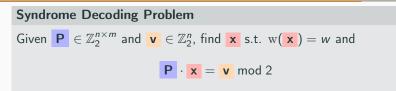
- 1. **Permuting:** Proving the witness constraint using random permutation
 - Send the verifier $\pi(\mathbf{x})$
 - **x** is binary of hamming weight w iff $\pi(\mathbf{x})$ does
 - \square The randomness of π protects the value of **x**



- 1. **Permuting:** Proving the witness constraint using random permutation
 - Send the verifier $\pi(\mathbf{x})$
 - **x** is binary of hamming weight w iff $\pi(\mathbf{x})$ does

 \square The randomness of π protects the value of **x**

- 2. Masking: Proving linear equation using a random mask r
 - Send the verifier $\mathbf{y} = \mathbf{x} + \mathbf{r}$ and show that $\mathbf{P} \cdot \mathbf{y} = \mathbf{v} + \mathbf{P} \cdot \mathbf{r}$



- 1. **Permuting:** Proving the witness constraint using random permutation
 - Send the verifier $\pi(\mathbf{x})$
 - **x** is binary of hamming weight w iff $\pi(\mathbf{x})$ does

 \square The randomness of π protects the value of **x**

- 2. Masking: Proving linear equation using a random mask r
 - Send the verifier $\mathbf{y} = \mathbf{x} + \mathbf{r}$ and show that $\mathbf{P} \cdot \mathbf{y} = \mathbf{v} + \mathbf{P} \cdot \mathbf{r}$

Idea: We will

- 2.1 Pre-process the given quadratic relation
- 2.2 Exploit permuting to prove the relation

18 16/20

Idea: Binary decomposition

Idea: Binary decomposition

- z is still quadratic: each z_i is a product of a bit from X with a bit from s
- The component bits additionally satisfy other relations

Idea: Binary decomposition

z is still quadratic: each z_i is a product of a bit from X with a bit from s

► The component bits additionally satisfy other relations

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Idea: Two-bit based permutations Define bit-extension $ext(\cdot, \cdot)$ and permutation $T_{b_1, b_2}(\cdot)$ s.t.

 $\mathbf{v} = \text{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \text{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Idea: Two-bit based permutations Define bit-extension $ext(\cdot, \cdot)$ and permutation $T_{b_1, b_2}(\cdot)$ s.t.

$$\mathbf{v} = \text{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \text{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

1. Extend
$$z = c_1 \cdot c_2$$
 to $\mathbf{v} = \text{ext}(c_1, c_2)$

Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Idea: Two-bit based permutations Define bit-extension $ext(\cdot, \cdot)$ and permutation $T_{b_1, b_2}(\cdot)$ s.t.

$$\mathbf{v} = \text{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \text{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

- 1. Extend $z = c_1 \cdot c_2$ to $\mathbf{v} = \text{ext}(c_1, c_2)$
- 2. Permute **v** with random bits b_1, b_2 , and give the verifier the permuted vector $T_{b_1, b_2}(\mathbf{v})$

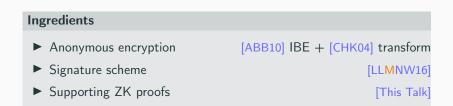
Goal

Prove that a secret bit z is of form $z = c_1 \cdot c_2$, while preserving the possibility to show that the component bits c_1 and c_2 satisfy other equations.

Idea: Two-bit based permutations Define bit-extension $ext(\cdot, \cdot)$ and permutation $T_{b_1, b_2}(\cdot)$ s.t.

$$\mathbf{v} = \text{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{v}) = \text{ext}(c_1 \oplus b_1, c_2 \oplus b_2)$$

- 1. Extend $z = c_1 \cdot c_2$ to $\mathbf{v} = \text{ext}(c_1, c_2)$
- 2. Permute **v** with random bits b_1, b_2 , and give the verifier the permuted vector $T_{b_1, b_2}(\mathbf{v})$
- To prove that the same bits c1, c2 appear in other equations: set up similar mechanisms at their other appearances, and use the same b1, b2.



[KTY07]'s modular construction \Rightarrow first group encryption construction from (classical) lattice assumptions proven secure in the standard model

► Our results:

Zero-Knowledge arguments for "quadratic relations":

$$\mathbf{X} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q.$$

- $\rightarrow\,$ Building block for cryptography: may be of independent interest
 - First lattice-based group encryption scheme

Questions?

