Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions

Benoît Libert^{1,2} San Ling³ **Fabrice Mouhartem**¹ Khoa Nguyen³ Huaxiong Wang³

¹É.N.S. de Lyon, France

²CNRS, France

³Nanyang Technological University, Singapore

Caen, 30/11/2016

Important Goal: Anonymous authentication.

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- ► A signature scheme
- ► Zero-knowledge (ZK) proofs

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- ► A signature scheme
- ► Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)

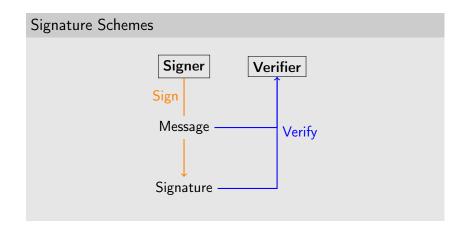
Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

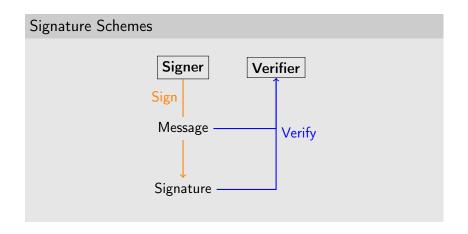
Ingredients

- A signature scheme
- ► Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)

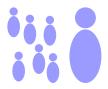
Digital Signatures



Digital Signatures



Guarantees authenticity and integrity.



A user wants to take public transportations.

► Authenticity & Integrity

- ► Authenticity & Integrity
- ► Anonymity

- Authenticity & Integrity
- ► Anonymity
- ► Dynamicity i ← Join

- ► Authenticity & Integrity
- ► Anonymity
- ► Dynamicity Join
- ▶ Traceability

Why dynamic group signature?

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

Applications: access control in public transportation, smart cars communications, anonymous access control (e.g., in buildings)...

Why dynamic group signature?

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

Applications: access control in public transportation, smart cars communications, anonymous access control (e.g., in buildings)...

Main Differences

Static Group	Dynamic Group
GM distributes keys	\mathcal{U}_i makes his secret certified
Cannot add new users	Even colluding GM/OA cannot sign on be-
	half of a honest group member

Motivation

Advantages of the dynamic group setting:

► Add users without re-running the **Setup** phase;

Motivation

Advantages of the dynamic group setting:

- ► Add users without re-running the **Setup** phase;
- ► Even if everyone, including authorities, is dishonest, no one can sign in your name;

Motivation

Advantages of the dynamic group setting:

- Add users without re-running the Setup phase;
- Even if everyone, including authorities, is dishonest, no one can sign in your name;
- Most use cases inherently require dynamic groups (e.g., building's access control)

Commitments

Digital equivalent of a sealed box.

e.g., Pedersen Commitment
$$pk = (g, h) \leftarrow \mathbb{G}^2$$
 $com = g^m \cdot h^r$ $open = (m, r)$

Commitments

Digital equivalent of a sealed box.

e.g., Pedersen Commitment $pk = (g, h) \leftarrow \mathbb{G}^2$ $com = g^m \cdot h^r$ open = (m, r)

Properties

Commitments provide

- ► Binding property: once sealed, a value cannot be changed
- Hiding property: nobody is able tell what is inside the box without the key

Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya'01)

Principle (e.g., U-Prove, Idemix)

Involves three parties: Issuers, Users and Verifiers.

- ► User dynamically obtains credentials from an issuer under a (pseudonym = commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different (unlinkable) pseudonyms

Different flavors: one-show/multi-show credentials, attribute-based access control,...

Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya'01)

Principle (e.g., U-Prove, Idemix)

Involves three parties: Issuers, Users and Verifiers.

- ► User dynamically obtains credentials from an issuer under a (pseudonym = commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different (unlinkable) pseudonyms

Different flavors: one-show/multi-show credentials, attribute-based access control....

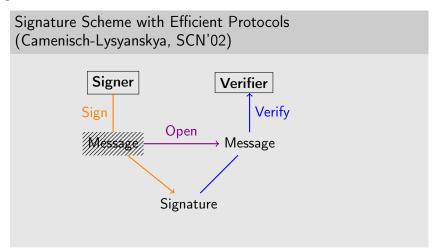
General construction from signature with efficient protocols:

- Issuer gives a user a signature on a committed message;
- ► User proves that same secret underlies different pseudonyms;
- ▶ User proves that he possesses a message-signature pair.

Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02) Signer Verifier Sign Message Signature

Signature with Efficient Protocols



► Sign committed values

Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02) Signer Verifier Sign Open Message Signature **ZKPoK**

- ► Sign committed values
- Proof of Knowledge (PoK) of (Message; Signature)

Lattice-Based Cryptography

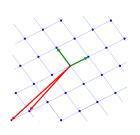
Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.



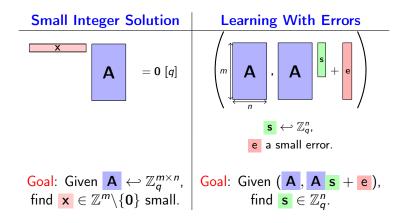
Why?

- Simple and efficient;
- Still conjectured quantum-resistant;
- ► Connection between average-case and worst-case problems;
- ► Powerful functionalities (e.g., FHE).
- \rightarrow Finding a non-zero short vector in a lattice is hard.

Hardness Assumptions: SIS and LWE

Parameters: n dimension, $m \ge n$, q modulus.

For $\mathbf{A} \leftarrow \mathcal{U}(\mathbb{Z}_a^{m \times n})$:



Provable Security



- 1991 Chaum and Van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups

- 1991 Chaum and Van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups

- 1991 Chaum and Van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups
- 2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme
- 2013 Laguillaumie, Langlois, Libert and Stehlé: sub-linear signatures

- 1991 Chaum and Van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups
- 2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme
- 2013 Laguillaumie, Langlois, Libert and Stehlé: sub-linear signatures

No dynamic group signature scheme based on lattices

Outline

Introduction

Definition

Presentation of the Scheme

Conclusion

Signature with Efficient Protocols (CL'02)

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with companion protocols:

- Sign a committed value;
- ▶ Prove possession of a signature.

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with companion protocols:

- Sign a committed value;
- ▶ Prove possession of a signature.

Security

Unforgeability;

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with companion protocols:

- ► Sign a committed value;
- ▶ Prove possession of a signature.

Security

- ► Unforgeability;
- Security of the two protocols;
- Anonymity.

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with companion protocols:

- ► Sign a committed value;
- ▶ Prove possession of a signature.

Security

- Unforgeability;
- ► Security of the two protocols;
- Anonymity.
- \rightarrow many applications for privacy-based protocols

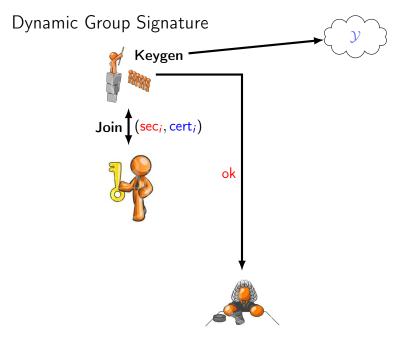
A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with companion protocols:

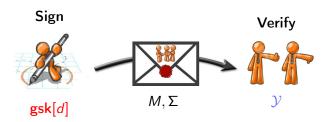
- ► Sign a committed value;
- ▶ Prove possession of a signature.

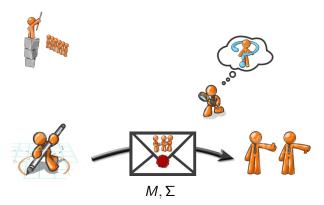
Security

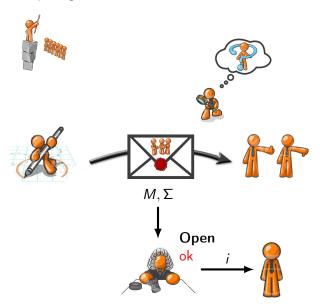
- Unforgeability;
- ► Security of the two protocols;
- Anonymity.
- → many applications for privacy-based protocols

Existing constructions rely on Strong RSA assumption or bilinear maps.









Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

► Setup:

Input: security parameter λ , bound on group size N Output: public parameters \mathcal{Y} , group manager's secret key \mathcal{S}_{GM} , the opening authority's secret key \mathcal{S}_{OA} ;

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

▶ **Join:** interactive protocols between $U_i \rightleftharpoons \mathbf{GM}$. Provide $(\mathsf{cert}_i, \mathsf{sec}_i)$ to U_i . Where cert_i attests the secret sec_i . Update the user list along with the certificates;

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Sign and Verify proceed in the obvious way;

► Open:

Input: **OA**'s secret S_{OA} , M and Σ

Output: i.

Security

Three security notions

► Anonymity: only OA can open a signature;

Security

Three security notions

- Anonymity: only OA can open a signature;
- ► Traceability (= security of honest GM against users): no coalition of malicious users can create a signature that cannot be traced to one of them;

Security

Three security notions

- Anonymity: only OA can open a signature;
- Traceability (= security of honest GM against users):
 no coalition of malicious users can create a signature that cannot be traced to one of them;
- Non-frameability (= security of honest members): colluding GM and OA cannot frame honest users.

Outline

Introduction

Definition

Presentation of the Scheme

Conclusion

Based on a variant of Boyen's signature (PKC'10)

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\{\mathbf{A}_i\}_{i=0}^\ell \in \mathbb{Z}_q^{n \times m}$, the signature is a small

$$\mathbf{d} \in \mathbb{Z}^{2m}$$
 s.t. $\mathbf{A} \left[\mathbf{A}_0 + \sum_{j=1}^{\ell} \mathfrak{m}_j \mathbf{A}_j \right] \cdot \mathbf{d} = \mathbf{0} \ [q].$

The private key is a short $T_A \in \mathbb{Z}_q^{m \times m}$ s.t. $A \cdot T_A = 0$ [q].

Based on a variant of Boyen's signature (PKC'10)

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\{\mathbf{A}_i\}_{i=0}^\ell \in \mathbb{Z}_q^{n \times m}$, the signature is a small

$$\mathbf{d} \in \mathbb{Z}^{2m}$$
 s.t. $\mathbf{A} \left[\mathbf{A}_0 + \sum_{j=1}^{\ell} \mathfrak{m}_j \mathbf{A}_j \right] \cdot \mathbf{d} = \mathbf{0} \ [q].$

The private key is a short $T_A \in \mathbb{Z}_q^{m \times m}$ s.t. $A \cdot T_A = 0$ [q].

(A modification of) Böhl et al.'s variant (Eurocrypt'13)

$$au \leftarrow \mathcal{U}(\{0,1\}^\ell)$$
, **D** and **u** are public, $\mathfrak{m} \in \{0,1\}^{2m}$ encodes Msg.

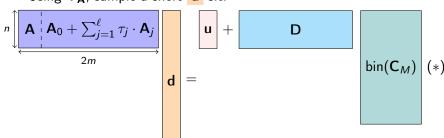
$$\rightarrow \sigma = (\tau, \mathbf{d})$$

To sign $M \in \{0,1\}^{2m}$

- ▶ Sample random $au \in \{0,1\}^\ell$, random $\mathbf{s} \in D_{\mathbb{Z}^{2m}, \tilde{\sigma}}$
- $lackbox{lack}$ Compute $lackbox{lack}{lack} C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}_q^{2n}$

To sign $M \in \{0,1\}^{2m}$

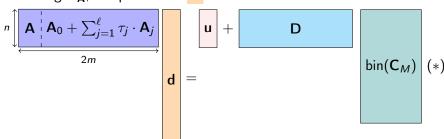
- ▶ Sample random $au \in \{0,1\}^\ell$, random $\mathbf{s} \in D_{\mathbb{Z}^{2m}, \tilde{\sigma}}$
- $lackbox{\sf Compute} \left[lackbox{\sf C}_M\right] = ldot_0 \cdot ldot + ldot_1 \cdot M \in \mathbb{Z}_q^{2n}$
- ► Using T_A, sample a short d s.t.



$$\Sigma = (\tau, \mathbf{d}, \mathbf{s}) \in \{0, 1\}^{\ell} \times \mathbb{Z}^{2m} \times \mathbb{Z}^{2m}$$

To sign $M \in \{0, 1\}^{2m}$

- ▶ Sample random $\tau \in \{0,1\}^{\ell}$, random $\mathbf{s} \in D_{\mathbb{Z}^{2m},\tilde{\sigma}}$
- ► Compute $C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}_q^{2n}$
- ► Using T_A, sample a short d s.t.



$$\Sigma = (\tau, \mathbf{d}, \mathbf{s}) \in \{0, 1\}^{\ell} \times \mathbb{Z}^{2m} \times \mathbb{Z}^{2m}$$

To verify: check that \mathbf{d} is short and that Σ satisfies (*).

Kawachi et al. (Asiacrypt'08) commitment:

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Kawachi et al. (Asiacrypt'08) commitment:

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the message, the signature has a different distribution.

Kawachi et al. (Asiacrypt'08) commitment:

$$C_M = D_0 \cdot s + D_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the message, the signature has a different distribution.

Solution: Use Rényi divergence instead of statistical distance to bound adversary's advantage [BLLSS15].

Presentation

$$R_a(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

$$R_{a}(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

► Measurement of the distance between two distributions

Presentation

$$R_a(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- ► Measurement of the distance between two distributions
- Multiplicative instead of additive
 - ► Only use it once in the proof

Presentation

$$R_a(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- ► Measurement of the distance between two distributions
- Multiplicative instead of additive
 - ► Only use it once in the proof
- Probability preservation:

$$Q(A) \geqslant P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

Kawachi et al. (Asiacrypt'08) commitment:

For
$$\mathbf{D}_0, \mathbf{D}_1 \in \mathbb{Z}_q^{2n \times 2m}, \mathbf{s} \hookleftarrow \mathcal{D}_{\mathbb{Z}^2m,\sigma}, \mathcal{M} \in \{0,1\}^{2m}$$

$$C_M = D_0 \cdot s + D_1 \cdot M [q]$$

Compatible with Stern's protocol (Crypto'93, [LNSW; PKC'13])

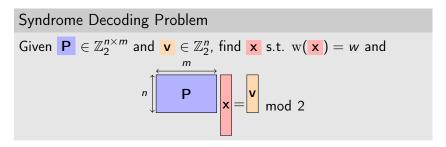
 \implies ZK proof compatible with the signature

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.



Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given
$$\mathbf{P} \in \mathbb{Z}_2^{n \times m}$$
 and $\mathbf{v} \in \mathbb{Z}_2^n$, find \mathbf{x} s.t. $\mathbf{w}(\mathbf{x}) = w$ and $\mathbf{p} = \mathbf{v}$ mod 2

[KTX08]: mod $2 \rightarrow \text{mod } q$

[LNSW13]: Extend Stern's protocol for SIS and LWE statements

Recent uses of Stern-like protocols in lattice-based crypto: [LNW15], [LLNW16], [LLNMW16]

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Provide a framework to construct ZKAoK:

- ▶ to prove knowledge of an $\mathbf{x} \in \{-1,0,1\}^n$ of a special form verifying $\mathbf{P} \cdot \mathbf{x} = \mathbf{v} \mod q$
 - ▶ many lattice statements reduce to this
 - this captures various and complex statements

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Provide a framework to construct ZKAoK:

- ▶ to prove knowledge of an $\mathbf{x} \in \{-1,0,1\}^n$ of a special form verifying $\mathbf{P} \cdot \mathbf{x} = \mathbf{v} \mod q$
 - ▶ many lattice statements reduce to this
 - this captures various and complex statements
- ► that uses [LNSW13]'s decomposition-extension framework and is combinatoric in Stern's protocol manner

From Static to Dynamic

► Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];

From Static to Dynamic

- ▶ Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];
- Non-frameability requires to introduce non-homogeneous terms in the SIS-based relations satisfied by membership certificates;

From Static to Dynamic

- ▶ Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];
- Non-frameability requires to introduce non-homogeneous terms in the SIS-based relations satisfied by membership certificates;
- ► Other solutions [LLLS13, NZZ15] use membership certificates made of a complete basis. . .
 - ... which is problematic with non-homogeneous terms.

► Separate the secrets between **OA** and **GM**;

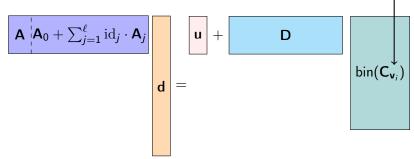
- Separate the secrets between OA and GM;
- ▶ Bind the user's secret \mathbf{z}_i to a unique public syndrome $\mathbf{v}_i = \mathbf{F} \cdot \mathbf{z}_i \in \mathbb{Z}_q^{4n}$ for some matrix $\mathbf{F} \in \mathbb{Z}_q^{4n \times 4m}$;

From Static to Dynamic

Difficulties

- ► Separate the secrets between **OA** and **GM**;
- ▶ Bind the user's secret \mathbf{z}_i to a unique public syndrome $\mathbf{v}_i = \mathbf{F} \cdot \mathbf{z}_i \in \mathbb{Z}_q^{4n}$ for some matrix $\mathbf{F} \in \mathbb{Z}_q^{4n \times 4m}$;

Use our signature scheme with efficient protocol:



► Difficulty: achieving security against framing attacks:

- ► Difficulty: achieving security against framing attacks:
 - ▶ i.e., even a dishonest GM cannot create signatures that open to honest users;
 - Users need a membership secret with a corresponding secret key;
 - ▶ GM must certify that public key.

- ► Difficulty: achieving security against framing attacks:
 - ▶ i.e., even a dishonest **GM** cannot create signatures that open to honest users;
 - Users need a membership secret with a corresponding secret key;
 - ► GM must certify that public key.
- ► Be secure against **framing attacks** without compromising previous security properties;

Setup:

group public key
$$\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Setup:

group public key
$$\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

$$\mathcal{U}_i$$

GM

Setup:

group public key
$$\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

$$U_i$$

 $\mathbf{z}_i \leftarrow \text{short vector in } \mathbb{Z}^{4m}$

$$\mathbf{v}_i = \mathbf{F} \cdot \mathbf{z}_i$$

Setup:

group public key
$$\mathcal{Y} = (\mathbf{A}, \{\mathbf{A}_i\}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{D}_0, \mathbf{D}_1, \mathbf{F}, \mathbf{u})$$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

$$\begin{array}{c} \mathcal{U}_i & \text{GM} \\ \mathbf{z}_i \hookleftarrow \text{ short vector in } \mathbb{Z}^{4m} \\ \hline \mathbf{v}_i &= \mathbf{F} \cdot \mathbf{z}_i & \xrightarrow{\mathbf{v}_i} \\ & \text{id}_i \hookleftarrow \text{ identity } \in \{0,1\}^\ell \\ & \text{ } \\ & \text$$

Setup:

group public key
$$\mathcal{Y}=(\mathbf{A},\{\mathbf{A}_i\}_{i=0}^\ell\,,\mathbf{B},\mathbf{D},\mathbf{D}_0,\mathbf{D}_1,\mathbf{F},\mathbf{u})$$
 $\ell=\log(N)~(e.g.~\ell=30)$

Join algorithm:

$$\mathcal{U}_{i} \qquad \qquad \text{GM}$$

$$\mathbf{z}_{i} \hookleftarrow \text{short vector in } \mathbb{Z}^{4m} \qquad \qquad \mathbf{v}_{i} \qquad \qquad \mathbf{id}_{i} \hookleftarrow \text{identity} \in \{0,1\}^{\ell}$$

$$\qquad \qquad \qquad \mathbf{if} \ (\mathrm{id}_{i},\mathbf{d}_{i},\mathbf{s}_{i}) \qquad \qquad \mathbf{id}_{i} \hookleftarrow \text{identity} \in \{0,1\}^{\ell}$$

$$\qquad \mathbf{id}_{i} \smile \text{identity} \in \{0,1\}^{\ell}$$

$$\qquad \mathbf{id$$

From Static to Dynamic Our solution — further steps

Goal

CCA-Anonymity: anonymity under opening oracle.

From Static to Dynamic Our solution — further steps

Goal

CCA-Anonymity: anonymity under opening oracle.

Canetti-Halevi-Katz transformation (Eurocrypt'04)

Any IBE implies IND-CCA-secure public key encryption.

From Static to Dynamic Our solution — further steps

Goal

CCA-Anonymity: anonymity under opening oracle.

Canetti-Halevi-Katz transformation (Eurocrypt'04)

Any IBE implies IND-CCA-secure public key encryption.

Identity Based Encryption (Shamir'84, Boneh-Franklin'01)

- ► Encryption computes $C \leftarrow \text{Enc}(MPK, ID, M)$
- ▶ Decryption computes M ← Dec(MPK, C, d_{ID}) where d_{ID} ← Keygen(MSK, ID)

Sign algorithm:

 $c := Enc(v_i)$

Sign algorithm:

$$\mathbf{c} := \mathsf{Enc}(\mathsf{v}_i) \quad \pi_K := \mathsf{proof} \ \mathsf{that} \ \mathbf{c} \ \mathsf{is} \ \mathsf{correct} \ \mathsf{and} \ \mathsf{that}$$

Sign algorithm:

$$\mathbf{c} := \mathsf{Enc}(\mathbf{v}_i)$$
 $\pi_K := \mathsf{proof} \ \mathsf{that} \ \mathbf{c} \ \mathsf{is} \ \mathsf{correct} \ \mathsf{and} \ \mathsf{that}$

$$\begin{array}{c|c} \mathbf{A} & \mathbf{A}_0 + \sum_{j=1}^{\ell} \mathrm{id}_j \cdot \mathbf{A}_j \\ \mathbf{d} & = \end{array}$$

Where is the message? [BSZ04]

Inside π_K , encoded in the Fiat-Shamir transformation from **ZK**-proofs to **NIZK**-proofs.

Verify algorithm:

▶ A user verifies if π_K is correct.

Verify algorithm:

▶ A user verifies if π_K is correct.

Open algorithm:

- ► OA decrypts c to get v_i;
- ► OA searchs for the associated *i* in the Join transcripts, and if so, returns *i*, otherwise abort.

Group Signatures: Comparative Table

Scheme	LLLS	NZZ	LNW
Group PK	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log N_{gs}$	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log N_{gs}$
User's SK	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda)$
Signature	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{gs}$	$\widetilde{\mathcal{O}}(\lambda + \log^2 N_{\rm gs})$	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{gs}$
Scheme	LLNW	Ours	
Group PK	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log N_{gs}$	
User's SK	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{gs}$	$\widetilde{\mathcal{O}}(\lambda)$	
Signature	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{gs}$	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{gs}$	

Outline

Introduction

Definition

Presentation of the Scheme

Conclusion

Conclusion

Main Contributions:

- ► Lattice-based signature with efficient protocols;
 - for obtaining signatures on committed message
 - ► for proving possession of a message-signature pair
- ► First dynamic group signature based on lattice assumptions;
- Unified framework for proving modular linear equations using Stern's technique.

Technical contributions:

- ► Combine Böhl *et al.* signature + Ling *et al.* ZK proofs ⇒ signature with efficient protocols;
- A method of signing public keys so that knowledge of the secret key can be efficiently proved.

Thank you all for your attention!

One-Time Signature

Definition

A one-time signature scheme consists of a triple of algorithms $\Pi^{\text{ots}} = (\mathcal{G}, \mathcal{S}, \mathcal{V})$. Behaves like a digital signature scheme.

Strong unforgeability: impossible to forge a valid signature *even* for a previously signed message.

Usage

We use one-time signature to provide CCA anonymity using Canetti-Halevi-Katz methodology.

CCA anonymity

Definition

No PPT adversary \mathcal{A} can win the following game with non negligible probability:

- ► A makes open queries.
- ▶ A chooses M^* and two different $(\operatorname{cert}_i^*, \operatorname{sec}_i^*)_{i \in \{0,1\}}$
- ▶ A receives $\sigma^* = Sign_{\text{cert}_b^*, \text{sec}_b^*}(M^*)$ for some $b \in \{0, 1\}$
- $ightharpoonup \mathcal{A}$ makes other open queries
- \blacktriangleright A returns b', and wins if b = b'

ZK Proofs

Σ-protocol [Dam10]

3-move scheme: (Commit, Challenge, Answer) between 2 users.

Fiat-Shamir Heuristic

Make the Σ -protocol **non-interactive** by setting the challenge to be H(Commit, Public)

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Lattice algorithms use short basis as trapdoor information.

SampleUp
$$\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, \mathbf{A} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{A}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$$

SampleDown
$$\mathbf{A}' = \frac{\mathbf{A}}{\left[\mathbf{B} \cdot \mathbf{A} + \mathbf{C}\right]} \in \mathbb{Z}_q^{2m \times n}, \mathbf{C} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{C}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$$

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Boyen's signature

$$\mathsf{d}^T \left[\frac{\mathsf{A}}{\mathsf{A}_0 + \sum_{i=1}^\ell m_i \mathsf{A}_i} \right] = \mathbf{0}[q]$$

Idea. Set
$$\mathbf{A}_i = \mathbf{Q}_i \mathbf{A} + h_i \mathbf{C}$$

$$\rightarrow \frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} = \frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i) \mathbf{A} + h_M \mathbf{C} \right]}$$

 \Rightarrow We can use SampleUp in the real setup and SampleDown in the reduction whenever $h_M \neq 0$.

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Recall
$$\mathbf{A}' := \frac{\mathbf{A}}{\left[\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i\right]} = \frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q_i})\mathbf{A} + h_M \mathbf{C}\right]}$$

Forgery. \mathcal{A} outputs $\mathbf{d}^{\star} = [\mathbf{d}_{1}^{\star T} | \mathbf{d}_{2}^{\star T}]^{T}$ and $M^{\star} = m_{1}^{\star} \dots m_{\ell}^{\star}$ such that $\mathbf{d}^{\star T} \mathbf{A}' = 0$. If $h_{M^{\star}} = 0$, then

$$\underbrace{\left(\mathsf{d}_{1}^{\star T} + \mathsf{d}_{2}^{\star T} \left(\mathsf{Q}_{0} + \sum_{i=1}^{\ell} m_{i}^{\star} \mathsf{Q}_{i}\right)\right)}_{\mathsf{valid} \; \mathsf{SIS} \; \mathsf{solution}} \mathsf{A} = \mathsf{0}[q]$$

Remark

Boyen's signature: the reduction aborts if C vanishes.

Böhl et al.: answer the request by "programming" the vector

$$\mathbf{u}^T = \mathbf{d}^{\dagger T} \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i^{\dagger} \mathbf{Q}_i) \mathbf{A} \right]} - \mathbf{z}_{i \dagger}^T \mathbf{D}.$$

Problem

In this request, a sum of two discrete gaussian is generated differently from the real **Join** protocol.

 \Rightarrow Not the same standard deviation.

Problem

$$z_{i,0}, z_{i,1}, z_i \in \mathbb{Z}^m$$

Consequence.

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Presentation

$$R_a(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Measurement of the distance between two distributions

Presentation

$$R_a(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- Measurement of the distance between two distributions
- Multiplicative instead of additive
- Probability preservation:

$$Q(A) \geqslant P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

Hybrid argument:

Real game
$$\underset{\stackrel{\hat{}}{\rightarrow}}{\rightarrow}$$
 Game 1 $\underset{\stackrel{\hat{}}{\rightarrow}}{\rightarrow}$ Game 2 $\underset{\stackrel{\hat{}}{\rightarrow}}{\rightarrow}$ Hard Game 1.— Hardness assumptions -

Bound winning probability.

Can be done through probability preservation!

Recall

$$Q(A) \geqslant P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

$$\Pr[W_2] \ge \Pr[W_1]^{\frac{a}{a-1}} / R_a(Game_1 || Game_2)$$

For instance: $Pr[W_2] \ge Pr[W_1]^2 / R_2(Game_1 || Game_2)$

Rényi Divergence In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

- ightarrow In our setting, implies $q \sim \exp(\lambda)$ (smudging)
- $\,\rightarrow\,$ Higher cost compared to usual lattice-based crypto parameters