Practical "Signatures with Efficient Protocols" from Simple Assumptions

Benoît Libert¹ Fabrice Mouhartem¹ Thomas Peters² Moti Yung³

¹École Normale Supérieure de Lyon, France

²Université Catholique de Louvain, Belgium

³Snapchat & Columbia University, USA

AsiaCCS, Xi'an - June 2nd 2016

Important Goal: Anonymous authentication.

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Requires

- A signature scheme
- Zero-knowledge (ZK) proof

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Requires

- A signature scheme
- Zero-knowledge (ZK) proof compatible with this signature

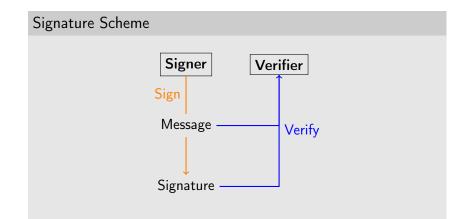
Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

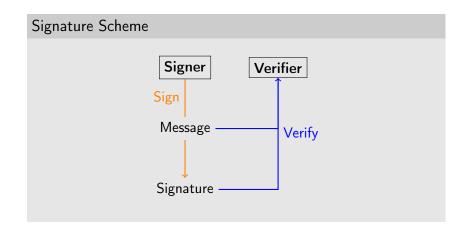
Requires

- A signature scheme
- Zero-knowledge (ZK) proof compatible with this signature

Digital Signatures



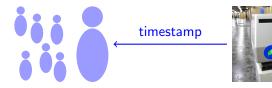
Digital Signatures



Guarantees authenticity and integrity.

Bob wants to take public transportations.

Bob wants to take public transportations.



Bob wants to take public transportations.

Authenticity & Integrity

Bob wants to take public transportations.

- Authenticity & Integrity
- Anonymity

Bob wants to take public transportations.

- Authenticity & Integrity
- Anonymity

■ Dynamicity
$$i \leftarrow Join \longrightarrow i$$

Bob wants to take public transportations.

- Authenticity & Integrity
- Anonymity
- Dynamicity $i \leftarrow Join \longrightarrow$
- Traceability

Commitments

Digital equivalent of a sealed box.

Commitments

Digital equivalent of a sealed box.

Properties

Commitments provide

Binding property: once sealed, a value cannot be changed

Commitments

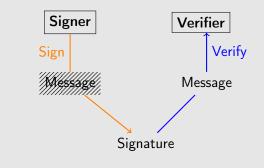
Digital equivalent of a sealed box.

Properties

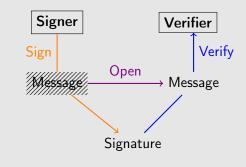
Commitments provide

- Binding property: once sealed, a value cannot be changed
- Hiding property: nobody can tell what is inside the box without the key

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)

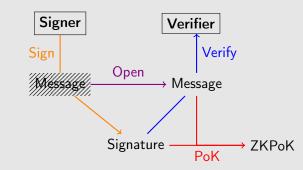


Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)



SignatureSign committed values

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)



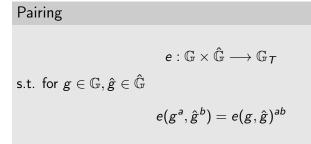
Signature

- Sign committed values
- Proof of Knowledge (PoK) of (Message; Signature)

Fabrice Mouhartem

Practical "Signatures with Efficient Protocols" from Simple Assumptions

Pairing-Based Cryptography



Pairing-Based Cryptography

Pairing

$$e: \mathbb{G} \times \hat{\mathbb{G}} \longrightarrow \mathbb{G}_T$$

s.t. for $g \in \mathbb{G}, \hat{g} \in \hat{\mathbb{G}}$

$$e(g^a, \hat{g}^b) = e(g, \hat{g})^{ab}$$

Hardness assumptions:

- **SXDH**: *DDH* holds in \mathbb{G} and $\hat{\mathbb{G}}$ with $\mathbb{G} \neq \hat{\mathbb{G}}$
 - ▶ **DDH**: given (g, g^a, g^b, g^c) , tells whether $c = a \cdot b$ or $c \in_R \mathbb{Z}_p$

SDL: given $(g, \hat{g}, g^a, \hat{g}^a)$, compute $a \in \mathbb{Z}_p$ with $p = |\mathbb{G}|$

 \rightarrow Well studied, fixed-size assumptions.

Standard assumptions are static and non-interactive assumptions.

Standard assumptions are static and non-interactive assumptions.

VS

Static (or fixed-size) assumptions

DDH: $(g^a, g^b, g^c) \mapsto$ tells if c = ab or c random.

q-type assumptions

■ *q*-DH-Inversion: $(g^x, g^{x^2}, \dots, g^{x^q}) \mapsto g^{x^{q+1}}$

Standard assumptions are static and non-interactive assumptions.

vs

Static (or fixed-size) assumptions

DDH: $(g^a, g^b, g^c) \mapsto$ tells if c = ab or c random.

```
q-type assumptions
```

■ *q*-DH-Inversion: $(g^x, g^{x^2}, \dots, g^{x^q}) \mapsto g^{x^{q+1}}$

q usually represents the number of adversarial queries Large values of *q* may lead to attacks (Cheon (Eurocrypt'06))

Standard assumptions are static and non-interactive assumptions.

VS

Static (or fixed-size) assumptions

DDH: $(g^a, g^b, g^c) \mapsto$ tells if c = ab or c random.

q-type assumptions

■ *q*-DH-Inversion: $(g^x, g^{x^2}, \dots, g^{x^q}) \mapsto g^{x^{q+1}}$

q usually represents the number of adversarial queries Large values of *q* may lead to attacks (Cheon (Eurocrypt'06))

Non-interactive assumptions

■ DL: $g^a \in \mathbb{G} \mapsto a \in \mathbb{Z}_p$ Interactive assumptions

■ One-more-DL: given oracle access to (g^{a_i} → a_i), finds (b_i)_i given (g^{b_i})_i

Outline

Introduction

Our Signature Scheme

Dynamic Group Signature

Conclusion

Signature Scheme:

Constant-size

Signature Scheme:

■ Constant-size 4 group elements

Signature Scheme:

- Constant-size 4 group elements
- Multi-block

Signature Scheme:

- Constant-size 4 group elements
- Multi-block
- Randomizable

Signature Scheme:

- Constant-size 4 group elements
- Multi-block
- Randomizable

Compatible with Efficient Protocols

Signature Scheme:

- Constant-size 4 group elements
- Multi-block
- Randomizable

Compatible with Efficient Protocols

Sign committed messages

Signature Scheme:

- Constant-size 4 group elements
- Multi-block
- Randomizable

Compatible with Efficient Protocols

- Sign committed messages
- ZK-Prove the knowledge of a valid message-signature pair

Linear Subspace Membership

Linear Subspace Membership

We say that $\vec{v} \in \text{Span}(\text{Rows}(\mathsf{M}))$ if there exists $\vec{w} \in \mathbb{Z}_p^t$ satisfying

 $\vec{v} = g^{\vec{w} \cdot \mathbf{M}} \in \mathbb{G}^{n}$ $\vec{v} = \begin{bmatrix} \vec{w} \\ t \end{bmatrix} \begin{bmatrix} g^{\mathbf{M}} \\ \vdots \\ n \end{bmatrix}$

11/20

Linear Subspace Membership

Linear Subspace Membership

We say that $\vec{v} \in \text{Span}(\text{Rows}(\mathsf{M}))$ if there exists $\vec{w} \in \mathbb{Z}_p^t$ satisfying

 $\vec{v} = g^{\vec{w} \cdot \mathbf{M}} \in \mathbb{G}^n$

$$\vec{v} = \vec{w} \quad t \uparrow \vec{g}^{\mathsf{M}}$$

First **Quasi-Adaptive Non-Interactive-ZK** (QA-NIZK) proofs was proposed by Libert-Peters-Joye-Yung (Eurocrypt'14)

11/20

Linear Subspace Membership

Linear Subspace Membership

We say that $\vec{v} \in \text{Span}(\text{Rows}(\mathsf{M}))$ if there exists $\vec{w} \in \mathbb{Z}_p^t$ satisfying

 $\vec{v} = g^{\vec{w} \cdot \mathbf{M}} \in \mathbb{G}^n$

$$\vec{v} = \vec{w} \quad t \uparrow g^{\mathsf{M}}$$

First **Quasi-Adaptive Non-Interactive-ZK** (QA-NIZK) proofs was proposed by Libert-Peters-Joye-Yung (Eurocrypt'14)

Quasi-Adaptive (Jutla-Roy (Asiacrypt'13)) means that the common reference string (crs) may depend on the language (here the matrix M)

Proof System for Linear Subspace Membership

Use of Kiltz-Wee Quasi-Adaptive Non-Interactive ZK proofs (QA-NIZK) to prove linear subspace membership.

Proof System for Linear Subspace Membership

Use of Kiltz-Wee Quasi-Adaptive Non-Interactive ZK proofs (QA-NIZK) to prove linear subspace membership.

Kiltz-Wee QA-NIZK (Eurocrypt'15) Given $\mathbf{M} = (\vec{M}_1, \dots, \vec{M}_t)^T \in \mathbb{G}^{t \times n}$, $\pi \in \mathbb{G}$ prove that $\vec{v} \in \text{Span}(\text{Rows}(\mathbf{M}))$ for some witness \vec{w} .

Which is constant-size.

12/20

Our Signature Scheme

$$pk = (cp, crs, \vec{v} = (v_1, \dots, v_\ell, w) \in_R \mathbb{G}^{\ell+1}, \Omega = h^{\omega}) \quad sk = \omega$$

$$\mathbf{M} = \begin{pmatrix} g & 1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & h \\ v_1 & g & 0 & \cdots & 0 & h & 0 & \cdots & 0 & 1 \\ \vdots & 0 & \ddots & 0 & \vdots & 0 & \ddots & 0 & \vdots & \vdots \\ v_\ell & 0 & \cdots & g & 0 & 0 & \cdots & h & 0 & 1 \\ w & 0 & \cdots & 0 & g & 0 & \cdots & 0 & h & 1 \end{pmatrix}$$

Our Signature Scheme

$$pk = (cp, crs, \vec{v} = (v_1, \dots, v_\ell, w) \in_R \mathbb{G}^{\ell+1}, \Omega = h^{\omega}) \quad sk = \omega$$

$$\mathbf{M} = \begin{pmatrix} g & 1 & \cdots & 1 & 1 & 1 & 1 & 1 & \cdots & 1 & h \\ v_1 & g & 0 & \cdots & 0 & h & 0 & \cdots & 0 & 1 \\ \vdots & 0 & \ddots & 0 & \vdots & 0 & \ddots & 0 & \vdots & \vdots \\ v_{\ell} & 0 & \cdots & g & 0 & 0 & \cdots & h & 0 & 1 \\ w & 0 & \cdots & 0 & g & 0 & \cdots & 0 & h & 1 \end{pmatrix} \qquad \begin{matrix} \omega \\ m_1 \cdot s \\ \vdots \\ m_{\ell} \cdot s \\ s \end{matrix}$$

 $\sigma_1 = g^{\omega} (v_1^{m_1} \cdots v_{\ell}^{m_{\ell}} w)^s \qquad \sigma_2 = g^s \qquad \sigma_3 = h^s$

+ π : ZK proof that

 $(\sigma_1, \sigma_2^{m_1}, \ldots, \sigma_2^{m_\ell}, \sigma_2, \sigma_3^{m_1}, \ldots, \sigma_3^{m_\ell}, \sigma_3, \Omega) \in$ Span(Rows(M))

Fabrice Mouhartem

Our Signature Scheme

$$pk = (cp, crs, \vec{v} = (v_1, \dots, v_\ell, w) \in_R \mathbb{G}^{\ell+1}, \Omega = h^{\omega}) \quad sk = \omega$$

$$\mathbf{M} = \begin{pmatrix} g & 1 & \cdots & 1 & 1 & 1 & 1 & 1 & \cdots & 1 & h \\ v_1 & g & 0 & \cdots & 0 & h & 0 & \cdots & 0 & 1 \\ \vdots & 0 & \ddots & 0 & \vdots & 0 & \ddots & 0 & \vdots & \vdots \\ v_{\ell} & 0 & \cdots & g & 0 & 0 & \cdots & h & 0 & 1 \\ w & 0 & \cdots & 0 & g & 0 & \cdots & 0 & h & 1 \end{pmatrix} \quad \begin{matrix} \omega \\ m_1 \cdot s & m_1 \cdot s' \\ \vdots & + & \vdots \\ m_{\ell} \cdot s & m_{\ell} \cdot s' \\ s & s' \end{pmatrix}$$

$$\sigma_1 = g^{\omega} (v_1^{m_1} \cdots v_{\ell}^{m_{\ell}} w)^s \qquad \sigma_2 = g^s \qquad \sigma_3 = h^s$$
$$\cdot (v_1^{m_1} \cdots v_{\ell}^{m_{\ell}} w)^{s'} \qquad \cdot g^{s'} \qquad \cdot h^{s'}$$

+ π : ZK proof that

 $(\sigma_1, \sigma_2^{m_1}, \dots, \sigma_2^{m_\ell}, \sigma_2, \sigma_3^{m_1}, \dots, \sigma_3^{m_\ell}, \sigma_3, \Omega) \in \operatorname{Span}(\operatorname{Rows}(\mathsf{M}))$

Fabrice Mouhartem

Practical "Signatures with Efficient Protocols" from Simple Assumptions

Properties

Security

The signature scheme is secure under **chosen-message attack** under **SXDH**.

Properties

Security

The signature scheme is secure under **chosen-message attack** under **SXDH**.

Efficient protocols

There exist practical protocols for:

signing committed messages

Properties

Security

The signature scheme is secure under **chosen-message attack** under **SXDH**.

Efficient protocols

There exist practical protocols for:

- signing committed messages
- proving knowledge of a valid message-signature pair

Outline

Introduction

Our Signature Scheme

Dynamic Group Signature

Conclusion

Fabrice Mouhartem

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open).

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open).

Setup: done by a trusted entity

Input: security parameter λ , bound on group size NOutput: public parameters \mathcal{Y} , group manager's secret key \mathcal{S}_{GM} , the opening authority's secret key \mathcal{S}_{OA}

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open).

■ Join: interactive protocols between $U_i \rightleftharpoons GM$. Provides (cert_i, sec_i) to U_i .

Where $cert_i$ attests the secret sec_i .

Updates the list of users and membership certificates.

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open).

■ Sign and Verify proceed as in standard digital signatures

Open:

Input: **OA**'s secret S_{OA} , M and Σ Output: i or \bot

Three security notions

■ Anonymity Only OA can open a signature

Three security notions

- Anonymity Only OA can open a signature
- Traceability Security of honest GM against malicious users who want to escape from traceability

Three security notions

- Anonymity Only OA can open a signature
- Traceability Security of honest GM against malicious users who want to escape from traceability
- Non-frameability Security of honest members against malicious GM/OA authorities

Three security notions

- Anonymity Only OA can open a signature
- Traceability Security of honest GM against malicious users who want to escape from traceability
- Non-frameability Security of honest members against malicious GM/OA authorities

CCA/CPA security refers to anonymity

Three security notions

- Anonymity Only OA can open a signature
- Traceability Security of honest GM against malicious users who want to escape from traceability
- Non-frameability Security of honest members against malicious GM/OA authorities

CCA/CPA security refers to anonymity

 \rightarrow Decryption queries correspond to opening queries

- $\blacksquare \ \text{Keygen} \to \mathcal{S}_{\text{GM}}, \mathcal{S}_{\text{OA}}, \mathcal{Y}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{GM}} \gets \mathsf{Sign.sk}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{OA}} \gets \mathsf{Enc.sk}$
 - $\blacktriangleright \ \mathcal{Y} \gets (\mathsf{Sign.pk}, \ \mathsf{Enc.pk})$

- $\blacksquare \ \text{Keygen} \rightarrow \mathcal{S}_{\text{GM}}, \mathcal{S}_{\text{OA}}, \mathcal{Y}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{GM}} \gets \mathsf{Sign.sk}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{OA}} \gets \mathsf{Enc.sk}$
 - $\blacktriangleright \ \mathcal{Y} \gets (\mathsf{Sign.pk}, \ \mathsf{Enc.pk})$
- Join
 - cert_i \leftarrow GM obliviously sign identity sec_i = ID chosen by U_i

- $\blacksquare \ \text{Keygen} \rightarrow \mathcal{S}_{\text{GM}}, \mathcal{S}_{\text{OA}}, \mathcal{Y}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{GM}} \gets \mathsf{Sign.sk}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{OA}} \gets \mathsf{Enc.sk}$
 - $\blacktriangleright \ \mathcal{Y} \gets (\mathsf{Sign.pk}, \ \mathsf{Enc.pk})$
- Join
 - ▶ cert_i ← GM obliviously sign identity sec_i = ID chosen by U_i

Sign \rightarrow (*C*, π)

- $\widetilde{\operatorname{cert}} \leftarrow \mathcal{U}_i$ re-randomize cert_i
- $C \leftarrow Encrypt(\widetilde{cert}; r)$
- $\pi \leftarrow \mathsf{ZKoK} \text{ of } (\mathsf{ID}; \widetilde{\mathsf{cert}}, r)$

- $\blacksquare \ \text{Keygen} \rightarrow \mathcal{S}_{\text{GM}}, \mathcal{S}_{\text{OA}}, \mathcal{Y}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{GM}} \gets \mathsf{Sign.sk}$
 - $\blacktriangleright \ \mathcal{S}_{\mathsf{OA}} \gets \mathsf{Enc.sk}$
 - $\blacktriangleright \ \mathcal{Y} \gets (\mathsf{Sign.pk}, \ \mathsf{Enc.pk})$
- Join
 - ▶ cert_i ← GM obliviously sign identity sec_i = ID chosen by U_i
- **Sign** \rightarrow (*C*, π)
 - $\widetilde{\operatorname{cert}} \leftarrow \mathcal{U}_i$ re-randomize cert_i
 - $C \leftarrow Encrypt(\widetilde{cert}; r)$
 - $\pi \leftarrow \mathsf{ZKoK} \text{ of } (\mathsf{ID}; \widetilde{\mathsf{cert}}, r)$

Use of the previous signature with efficient protocols.

Results

Security

The scheme is traceable, resistant to framing attacks and CCA-anonymous in the ROM under **SXDH** and **SDL** assumptions.

Results

Security

The scheme is traceable, resistant to framing attacks and CCA-anonymous in the ROM under **SXDH** and **SDL** assumptions.

In the **random oracle model** for efficiency reasons. (Libert-Peters-Yung'15 signature has 19+8 group elements)

Results

Security

The scheme is traceable, resistant to framing attacks and CCA-anonymous in the ROM under **SXDH** and **SDL** assumptions.

In the random oracle model for efficiency reasons.

(Libert-Peters-Yung'15 signature has 19+8 group elements)

Name	Signature length			Assumptions	Group Type	Anonymity
	G	\mathbb{Z}_p	bitsize			
BBS04	3	6	2 304	q-SDH + DLIN	Static	CPA
DP06	4	5	2 304	<mark>q-SDH</mark> + XDH	Dynamic	CCA
BCNSW10	3	2	1 280	interactive + SDL	Dynamic	CCA-
PS16	2	2	1 0 2 4	interactive	Dynamic	CCA-
Ours	7	3	2 560	SXDH + SDL	Dynamic	CCA

Table: Comparison between different group signature schemes

CCA- means selfless-CCA-anonymity

Fabrice Mouhartem

Conclusion

We propose:

- A group signature built on **well studied assumptions** with comparable signature length with other schemes
 - Almost as efficient as Delerablée-Pointcheval'06
- A rather efficient signature with efficient protocols that can be used for other privacy-friendly protocols
- An implementation is in progress

Conclusion

We propose:

- A group signature built on **well studied assumptions** with comparable signature length with other schemes
 - Almost as efficient as Delerablée-Pointcheval'06
- A rather efficient signature with efficient protocols that can be used for other privacy-friendly protocols
- An implementation is in progress

Thank you for your attention. Any Question?