Lattice-Based Group Signature for Dynamic Groups Journées C2

Benoît Libert, Fabrice Mouhartem

ÉNS de Lyon, LIP (AriC)

October 6, 2016

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

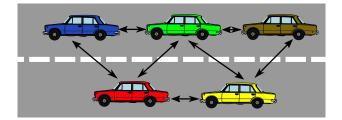
10/06/2015 1/25

FNS DF LYON

- Introduction

Example

Smart cars



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

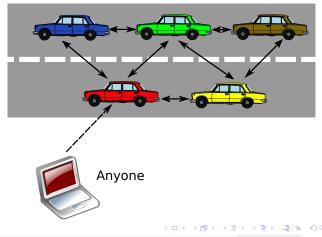
 10/06/2015
 2/25

イロト イポト イヨト イヨト

- Introduction

Example

Smart cars



Fabrice Mouhartem

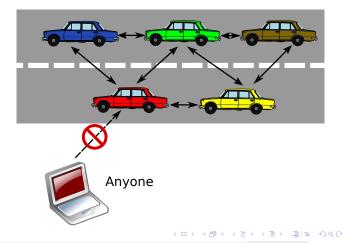
Lattice-Based Group Signature for Dynamic Groups

10/06/2015 2/25

- Introduction

Example Smart cars

AuthenticityIntegrity



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 2/25

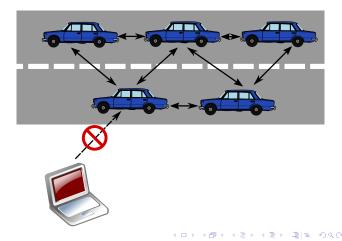
- Introduction

Example Smart cars

Authenticity

Integrity

Anonymity



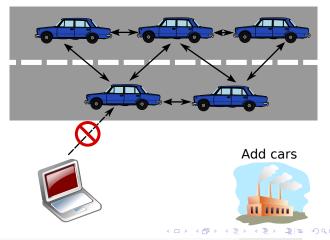
Lattice-Based Group Signature for Dynamic Groups

- Introduction

Example

Smart cars

- Authenticity
- Integrity
- Anonymity
- Dynamicity



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

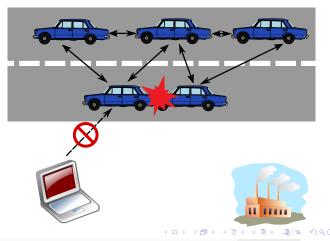
10/06/2015 2/25

- Introduction

Example

Smart cars

- Authenticity
- Integrity
- Anonymity
- Dynamicity



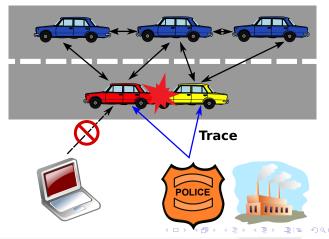
Lattice-Based Group Signature for Dynamic Groups

- Introduction

Example

Smart cars

- Authenticity
- Integrity
- Anonymity
- Dynamicity
- Traceability



Lattice-Based Group Signature for Dynamic Groups

Definition

A dynamic group signature allows a member of a group to anonymously sign a message on behalf of the group, and allow new users to join at any time.

Applications: smart cars, control in public transportation, anonymous access control (e.g., in public transportation)...

Definition

A dynamic group signature allows a member of a group to anonymously sign a message on behalf of the group, and allow new users to join at any time.

Applications: smart cars, control in public transportation, anonymous access control (e.g., in public transportation)...

Main Differences	
Static Group	Dynamic Group
GM distributes keys	\mathcal{U}_i makes his secret certified
GM must be trusted	Even colluding GM/OA cannot sign on
Cannot add new users	behalf of a honest group member

Advantages of dynamically growing groups:

Add users without re-running the **Setup** phase;

Advantages of dynamically growing groups:

- Add users without re-running the **Setup** phase;
- Even if everyone, including authorities, is dishonest, no one can sign in your name.

History

1991 Introduced by Chaum and Van Heyst

2003 Formal definition by Bellare-Micciancio-Warinschi for static groups.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

315 10/06/2015 5/25

History

- 1991 Introduced by Chaum and Van Heyst
- 2000 First scalable solution by Ateniese-Camenisch-Joye-Tsudik
- 2003 Formal definition by Bellare-Micciancio-Warinschi for static groups.
- 2004 Model for dynamic groups by Kiayias-Yung
- 2004 Model for dynamic groups by Bellare-Shi-Zhang

History

- 1991 Introduced by Chaum and Van Heyst
- 2000 First scalable solution by Ateniese-Camenisch-Joye-Tsudik
- 2003 Formal definition by Bellare-Micciancio-Warinschi for static groups.
- 2004 Model for dynamic groups by Kiayias-Yung
- 2004 Model for dynamic groups by Bellare-Shi-Zhang
- 2010 First scheme based on **lattices** by Gordon-Katz-Vaikuntanathan with linear size in the max. size of the group
- 2013 Down to log-size by Laguillaumie-Langlois-Libert-Stehlé
- 2015 More efficient schemes from Ling-Nguyen-Wang and Nguyen-Zhang-Zhang

10/06/2015 5/25

(日) (周) (王) (王) (王)

History

- 1991 Introduced by Chaum and Van Heyst
- 2000 First scalable solution by Ateniese-Camenisch-Joye-Tsudik
- 2003 Formal definition by Bellare-Micciancio-Warinschi for static groups.
- 2004 Model for dynamic groups by Kiayias-Yung
- 2004 Model for dynamic groups by Bellare-Shi-Zhang
- 2010 First scheme based on **lattices** by Gordon-Katz-Vaikuntanathan with linear size in the max. size of the group
- 2013 Down to log-size by Laguillaumie-Langlois-Libert-Stehlé
- 2015 More efficient schemes from Ling-Nguyen-Wang and Nguyen-Zhang-Zhang

No dynamic group signature scheme based on lattices

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 5/25

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

Fabrice Mouhartem

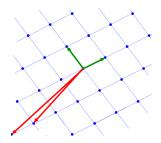
Lattice-Based Group Signature for Dynamic Groups

10/06/2015 6/25

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.



Fabrice Mouhartem

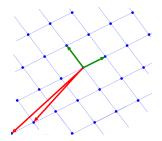
Lattice-Based Group Signature for Dynamic Groups

10/06/2015 6/25

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.



Find a non-zero short vector in a lattice is hard.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 6/25

- Introduction

Lattice-Based Cryptography

Why?

Simple and asymptotically efficient;

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

(■) ● ■ ■ ○ Q (10/06/2015 7/25

Lattice-Based Cryptography

Why?

- Simple and asymptotically efficient;
- Secure under well-studied assumptions;

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 7/25

< □ > < □ > < □ > < □ > < □ > < □ >

Lattice-Based Cryptography

Why?

- Simple and asymptotically efficient;
- Secure under well-studied assumptions;
- Conjectured resistant to a quantum adversary;

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 7/25

< □ > < □ > < □ > < □ > < □ > < □ >

Lattice-Based Cryptography

Why?

- Simple and asymptotically efficient;
- Secure under well-studied assumptions;
- Conjectured resistant to a quantum adversary;
- Powerful functionalities.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 7/25

A B A A B A

Outline

2 Definition

3 Presentation of the Scheme

4 Conclusion

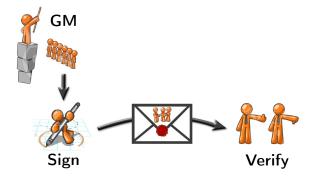
Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 8/25

- 日本 (四本) (日本 (日本)

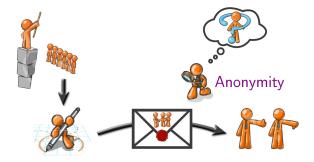
Presentation



Lattice-Based Group Signature for Dynamic Groups

イロト イポト イヨト イヨト

Presentation



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

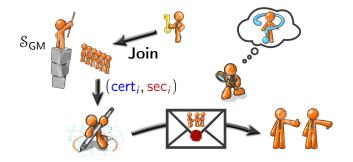
10/06/2015

ъ

イロト イポト イヨト イヨト

9/25

Presentation



Fabrice Mouhartem

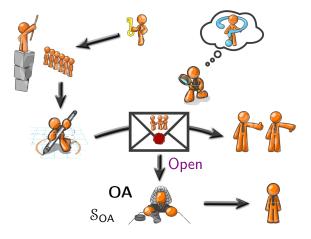
Lattice-Based Group Signature for Dynamic Groups

10/06/2015

A B A A B A

9/25

Presentation



Lattice-Based Group Signature for Dynamic Groups

ъ

(日) (同) (三) (三)

Dynamic Group Signature

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015

(4月) (1日) (日)

10/25

Dynamic Group Signature

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Setup: done in a trusted fashion
 Input: security parameter λ, bound on group size N
 Output: public parameters 𝔅, group manager's secret key
 S_{GM}, the opening authority's secret key S_{OA};

* □ ▶ * 個 ▶ * 글 ▶ * 글 ▶ 글 날

Dynamic Group Signature

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Join: interactive protocols between U_i ≓ GM. Provide (cert_i, sec_i) to U_i. Where cert_i attests the secret sec_i. Update the user list along with the certificates;

Dynamic Group Signature

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

• Sign and Verify proceed as in standard digital signatures.

Open:

Input: **OA**'s secret S_{OA} , M and Σ Output: *i*.

(本間) (本臣) (本臣) (王) (王)

Security Notions

Three security notions

Anonymity Only OA can open a signature;

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

▶ < ≣ ▶ Ξ|≡ ∽へで 10/06/2015 11/25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Three security notions

- Anonymity Only OA can open a signature;
- Traceability Security of honest GM against malicious users who want to escape from traceability;

イモトイモト

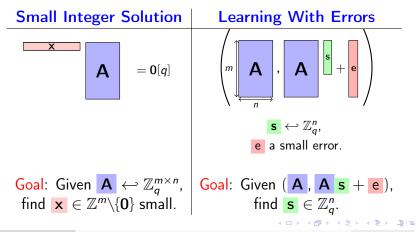
Security Notions

Three security notions

- Anonymity Only OA can open a signature;
- Traceability Security of honest GM against malicious users who want to escape from traceability;
- Non-frameability Security of honest members against malicious GM/OA authorities.

Hardness Assumptions: SIS and LWE

Parameters: *n* dimension, $m \ge n$, *q* modulus. For $\mathbf{A} \leftrightarrow \mathbb{Z}_{q}^{m \times n}$:

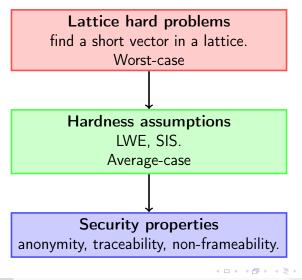


Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

Definition

Lattice-based cryptography?



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 13/25

Outline

2 Definition

3 Presentation of the Scheme

4 Conclusion

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 14/25

Lattice-Based Group Signature for Dynamic Groups

From Static to Dynamic

 Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15].

10/06/2015 15/25

From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15].
- Other solutions [GKV10,LLLS13] use membership certificates made of a complete basis...

... which is problematic here (due to non-homogeneous SIS).

Lattice-Based Group Signature for Dynamic Groups

From Static to Dynamic Difficulties

Separate the secrets between OA and GM;

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 16/25

Lattice-Based Group Signature for Dynamic Groups Presentation of the Scheme

From Static to Dynamic Difficulties

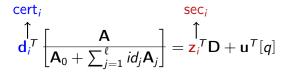
- Separate the secrets between OA and GM;
- Bind the user to a unique public syndrome $\mathbf{v}_i^T = \underbrace{\mathbf{z}_i^T}_{\in \mathbb{Z}^m} \mathbf{D} \in \mathbb{Z}_q^n$ for some matrix $\mathbf{D} \in \mathbb{Z}_q^{m \times n}$;

(日) (周) (王) (王) (王)

Lattice-Based Group Signature for Dynamic Groups Presentation of the Scheme

From Static to Dynamic Difficulties

- Separate the secrets between OA and GM;
- Bind the user to a unique public syndrome $\mathbf{v}_i^T = \underbrace{\mathbf{z}_i^T}_{\in \mathbb{Z}^m} \mathbf{D} \in \mathbb{Z}_q^n$ for some matrix $\mathbf{D} \in \mathbb{Z}_q^{m \times n}$;



Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 16/25

Lattice-Based Group Signature for Dynamic Groups

From Static to Dynamic Difficulties

 Previous schemes based on [LLLS13] do not interact well with the non-homogeneous terms v_i needed for non-frameability purposes;

Lattice-Based Group Signature for Dynamic Groups

(日) (周) (王) (王) (王)

Lattice-Based Group Signature for Dynamic Groups

From Static to Dynamic Difficulties

- Previous schemes based on [LLLS13] do not interact well with the non-homogeneous terms v_i needed for non-frameability purposes;
- Be secure against framing attacks without compromising previous security properties;

From Static to Dynamic Our solution - Ingredients

Boyen's signature (PKC'10)

Given
$$\mathbf{A} \in \mathbb{Z}_q^{m \times n}$$
 and $\{\mathbf{A}_i\}_{i=0}^{\ell} \in \mathbb{Z}_q^{m \times n}$, the signature is a small $\mathbf{d} \in \mathbb{Z}^{2m}$ s.t. $\mathbf{d}^T \cdot \begin{bmatrix} \mathbf{A} \\ \mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i \end{bmatrix} = \mathbf{0}[q].$

The private key is a short $T_A \in \mathbb{Z}_q^{m \times m}$ s.t. $T_A \cdot A = 0[q]$.

In our context: GM's secret is T_A .

クロシ 正正 ストメート スート ショー

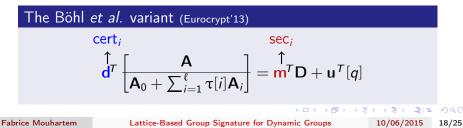
From Static to Dynamic Our solution - Ingredients

Boyen's signature (PKC'10)

Given
$$\mathbf{A} \in \mathbb{Z}_q^{m \times n}$$
 and $\{\mathbf{A}_i\}_{i=0}^{\ell} \in \mathbb{Z}_q^{m \times n}$, the signature is a small $\mathbf{d} \in \mathbb{Z}^{2m}$ s.t. $\mathbf{d}^T \cdot \begin{bmatrix} \mathbf{A} \\ \mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i \end{bmatrix} = \mathbf{0}[q].$

The private key is a short $\mathbf{T}_{\mathbf{A}} \in \mathbb{Z}_q^{m \times m}$ s.t. $\mathbf{T}_{\mathbf{A}} \cdot \mathbf{A} = 0[q]$.

In our context: GM's secret is T_A .



From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 19/25

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Join algorithm:

 \mathfrak{U}_i GM

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

GM

Join algorithm:

 $\begin{aligned} & \mathfrak{U}_i \\ \mathbf{z}_{i,0} & \leftrightarrow \text{ short vector in } \mathbb{Z}^m \\ & \mathbf{v}_{i,0}^T = \mathbf{z}_{i,0}^T \mathbf{D} \end{aligned}$

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Join algorithm:

$$\begin{array}{ccc} \mathcal{U}_{i} & \mathsf{GM} \\ \mathbf{z}_{i,0} \leftrightarrow \text{ short vector in } \mathbb{Z}^{m} \\ \mathbf{v}_{i,0}^{T} = \mathbf{z}_{i,0}^{T} \mathsf{D} \xrightarrow{\mathbf{v}_{i,0}} \\ & & \text{id}_{i} \leftarrow \text{ identity } \in \{0,1\}^{\ell} \\ & & \mathbf{z}_{i,1} \leftrightarrow \text{ short vector in } \mathbb{Z}^{m} \end{array}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 19/25

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Join algorithm:

$$\begin{aligned} \mathcal{U}_{i} & \mathsf{GM} \\ \mathbf{z}_{i,0} & \leftrightarrow \text{ short vector in } \mathbb{Z}^{m} \\ \mathbf{v}_{i,0}^{T} &= \mathbf{z}_{i,0}^{T} \mathsf{D} \xrightarrow{\mathbf{v}_{i,0}} & \text{id}_{i} \leftarrow \text{ identity } \in \{0, 1\}^{\ell} \\ \mathbf{z}_{i} &= \mathbf{z}_{i,0} + \mathbf{z}_{i,1} & \text{id}_{i} \leftarrow \text{ identity } \in \{0, 1\}^{\ell} \\ \mathbf{v}_{i}^{T} &= \mathbf{z}_{i}^{T} \mathsf{D} \end{aligned}$$

Authenticate \mathbf{v}_i , id_i and \mathbf{z}_i

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 19/25

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Join algorithm:

$$\begin{split} \mathcal{U}_{i} & \mathsf{GM} \\ \mathbf{z}_{i,0} & \hookrightarrow \text{ short vector in } \mathbb{Z}^{m} \\ \mathbf{v}_{i,0}^{T} &= \mathbf{z}_{i,0}^{T} \mathsf{D} \xrightarrow{\mathbf{v}_{i,0}} & \text{id}_{i} \leftarrow \text{identity} \in \{0, 1\}^{\ell} \\ \mathbf{z}_{i} &= \mathbf{z}_{i,0} + \mathbf{z}_{i,1} & \text{id}_{i} \leftarrow \text{identity} \in \{0, 1\}^{\ell} \\ \mathbf{z}_{i} &= \mathbf{z}_{i,0} + \mathbf{z}_{i,1} & \text{id}_{i} \leftarrow \text{identity} \in \{0, 1\}^{\ell} \\ \mathbf{v}_{i}^{T} &= \mathbf{z}_{i}^{T} \mathsf{D} \\ \mathsf{Authenticate} \ \mathbf{v}_{i}, \ \mathsf{id}_{i} \ \mathsf{and} \ \mathbf{z}_{i} & \xrightarrow{\mathbf{v}_{i}} & \mathsf{d}_{i}, \ \mathsf{s.t.} \\ & \mathsf{d}_{i}^{T} & \left[\underbrace{\mathbf{A}_{0}}_{i} + \sum_{i=1}^{\ell} \operatorname{id}_{i} \mathbf{A}_{i} \right] = \mathbf{v}_{i}^{T} + \mathbf{u}^{T}[q] \end{split}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 19/25

From Static to Dynamic Our solution

Setup: $\mathcal{Y} = (\mathbf{A}, {\mathbf{A}_i}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{u}) \quad \ell = \log(N) \ (e.g. \ \ell = 30)$ Where: $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_{\ell}, \mathbf{B}, \mathbf{D} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$

Join algorithm:

$$\begin{split} \mathcal{U}_{i} & \mathsf{GM} \\ \mathbf{z}_{i,0} & \hookrightarrow \text{ short vector in } \mathbb{Z}^{m} \\ \mathbf{v}_{i,0}^{T} &= \mathbf{z}_{i,0}^{T} \mathsf{D} \xrightarrow{\mathbf{v}_{i,0}} & \text{id}_{i} \leftarrow \text{identity} \in \{0, 1\}^{\ell} \\ \mathbf{z}_{i} &= \mathbf{z}_{i,0} + \mathbf{z}_{i,1} & \longleftarrow \text{ short vector in } \mathbb{Z}^{m} \\ \mathbf{v}_{i}^{T} &= \mathbf{z}_{i}^{T} \mathsf{D} \\ \text{Authenticate } \mathbf{v}_{i}, \text{ id}_{i} \text{ and } \mathbf{z}_{i} \xrightarrow{\mathbf{v}_{i}} \mathbf{d}_{i}, \text{ s.t.} \\ (\text{cert}_{i}; \text{sec}_{i}) &= ((\text{id}_{i}, \mathbf{d}_{i}); \mathbf{z}_{i}) \xleftarrow{\mathbf{d}_{i}} \overset{\mathbf{d}_{i}^{T} \left[\overbrace{\mathbf{A}_{0} + \sum_{i=1}^{\ell} \text{id}_{i} \mathbf{A}_{i} \right]}^{\mathbf{GM}} = \mathbf{v}_{i}^{T} + \mathbf{u}^{T}[q] \end{split}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 19/25

From Static to Dynamic Our solution

 $\begin{array}{ll} \text{Sign algorithm:} \\ \textbf{c}_1 := \textbf{Enc}(\mathrm{id}_i) \quad \textbf{c}_2 := \textbf{Enc}(\textbf{d}_i) \end{array}$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 20/25

From Static to Dynamic Our solution

Sign algorithm: $\mathbf{c}_1 := \mathbf{Enc}(\mathrm{id}_i)$ $\mathbf{c}_2 := \mathbf{Enc}(\mathbf{d}_i)$ $\pi_K := \text{proof that } \mathbf{c}_1, \mathbf{c}_2 \text{ are correct and}$

$$\mathbf{d}_{i}^{T} \left[\frac{\mathbf{A}}{\left[\mathbf{A}_{0} + \sum_{i=1}^{\ell} \mathrm{id}_{i} \mathbf{A}_{i} \right]} = \mathbf{v}_{i}^{T} + \mathbf{u}^{T}[q]$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 20/25

From Static to Dynamic Our solution

Sign algorithm:

$$\mathbf{c}_1 := \mathbf{Enc}(\mathrm{id}_i) \quad \mathbf{c}_2 := \mathbf{Enc}(\mathbf{d}_i)$$

 $\pi_{\mathcal{K}} := \text{proof that } \mathbf{c}_1, \, \mathbf{c}_2 \text{ are correct and}$
 $\mathbf{d}_i^T \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathrm{id}_i \mathbf{A}_i} \right] = \mathbf{v}_i^T + \mathbf{u}^T[q]$

Open algorithm:

- OA decrypts c₁, c₂ to get id and d;
- Using id and d, OA computes the associated syndrome v; =Sign_{usk[i]}(v_i,id_i)
- OA checks that (v, id, i, upk[i], sig) is in the records and that sig is correct.

If so then return i; otherwise return \downarrow_{i} , a_{i}

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 20/25

Lattice-Based Group Signature for Dynamic Groups

Presentation of the Scheme

Technical difficulties

Hybrid argument

$\begin{array}{c} \text{Real game} \xrightarrow{\uparrow} \text{Game } 1 \xrightarrow{\uparrow} \text{Game } 2 \xrightarrow{\rightarrow} \text{Hard Game} \\ \stackrel{\uparrow}{\downarrow} \\ \stackrel{\downarrow}{} - \text{Hardness assumptions} \xrightarrow{\downarrow} \end{array}$

Similar to the proof of Böhl et al.

Lattice-Based Group Signature for Dynamic Groups

Presentation of the Scheme

Technical difficulties

Hybrid argument

- Similar to the proof of Böhl et al.
- For one request: attacker's view differs from the real setting:

Technical difficulties

Hybrid argument

- Similar to the proof of Böhl et al.
- For one request: attacker's view differs from the real setting:
 - Possible solution: smudging (requires $q \sim \exp(\lambda)$)

Technical difficulties

Hybrid argument

- Similar to the proof of Böhl et al.
- For one request: attacker's view differs from the real setting:
 - Possible solution: smudging (requires q ~ exp(λ))
 - Use of the Rényi Divergence:

 $\Pr[W_2] \geqslant \Pr[W_1]^2 / R_2(\textit{Game}_1 || \textit{Game}_2).$

Fabrice Mouhartem

- Conclusion

Outline

2 Definition

3 Presentation of the Scheme

4 Conclusion

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 22/25

<□> <同> <同> <同> <同> <同> <同> <同> <同> <同> <

- Conclusion

Conclusion

Main contribution

First dynamic group signature based on lattice assumptions.

Technical contribution

We combine the Böhl *et al.* variant of Boyen's signature and the Ling *et al.* NIZK proofs.

Extensions

- Easily support proofs of correct opening [BSZ05];
- Join protocol extends to certify hidden data (signature with efficient protocols [CL02]).

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 23/25

Bibliography

References

- Mihir Bellare, Haixia Shi, Chong Zhang. Foundations of group signatures: The case of dynamic groups (CT-RSA'05)
- Aggelos Kiayias and Moti Yung.

Secure scalable group signature with dynamic joins and separable authorities

(International Journal of Security and Networks)

- Fabien Laguillaumie, Adeline Langlois, Benoit Libert, Damien Stehlé. Lattice-based group signature scheme with verifier-local revocation (Asiacrypt'13)
- San Ling, Khoa Nguyen, and Huaxiong Wang. Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based (PKC'15)

└─ Thanks

Question Time

Thank you all for your attention!

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

▶ ▲ 重 ▶ 重 ■ ● ● Q ○ 10/06/2015 25/25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-Time Signature

Definition

A one-time signature scheme consists of a triple of algorithms $\Pi^{ots} = (\mathfrak{G}, \mathfrak{S}, \mathcal{V})$. Behaves like a digital signature scheme.

Strong unforgeability: impossible to forge a valid signature *even for a previously signed message*.

Usage

We use one-time signature to provide CCA anonymity using Canetti-Halevi-Katz methodology.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 26/25

(日) (周) (王) (王) (王)

CCA anonymity

Definition

No PPT adversary $\ensuremath{\mathcal{A}}$ can win the following game with non negligible probability:

- *A* makes open queries.
- \mathcal{A} chooses M^* and two different $(\operatorname{cert}_i^*, \operatorname{sec}_i^*)_{i \in \{0,1\}}$
- \mathcal{A} receives $\sigma^{\star} = Sign_{\operatorname{cert}_{b}^{\star}, \operatorname{sec}_{b}^{\star}}(M^{\star})$ for some $b \in \{0, 1\}$
- \blacksquare \mathcal{A} makes other open queries
- \mathcal{A} returns b', and wins if b = b'

Fabrice Mouhartem

10/06/2015 27/25

7K Proofs

Σ -protocol [Dam10]

3-move scheme: (Commit, Challenge, Answer) between 2 users.

Fiat-Shamir Heuristic

Make the Σ -protocol non-interactive by setting the challenge to be *H*(**Commit**, Public)

Fabrice Mouhartem

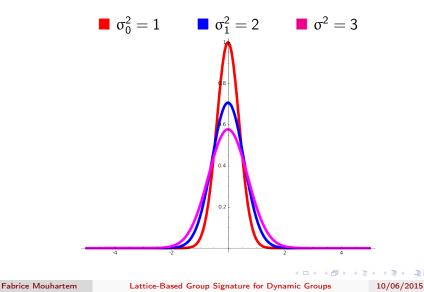
Lattice-Based Group Signature for Dynamic Groups

10/06/2015

(人間) トイヨト イヨト

28/25

Smudging



29/25

리님

From Static to Dynamic Our solution - Ingredients

Goal

CCA-Anonymity: anonymity under opening oracle.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 30/25

・ 同 ト ・ ヨ ト ・ ヨ

From Static to Dynamic Our solution - Ingredients

Goal

CCA-Anonymity: anonymity under opening oracle.

Canetti-Halevi-Katz transformation

From an IBE we can construct a *IND-CCA* public key encryption scheme.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 30/25

From Static to Dynamic Our solution — Ingredients

Goal

CCA-Anonymity: anonymity under opening oracle.

Canetti-Halevi-Katz transformation

From an IBE we can construct a *IND-CCA* public key encryption scheme.

Identity Based Encryption

An asymmetric encryption scheme (*Setup*, *Keygen*, *Enc*, *Dec*) using identity as public key.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 30/25

< □ > < □ > < □ > < □ > < □ > < □ >

Canetti-Halevi-Katz idea

CCA security

 $\begin{array}{l} M_0, \, M_1 \\ C = Enc(M_b), \, b \in \{0, 1\} \\ \textbf{Goal: find } b, \, \text{allowed to decrypt messages (all but } C). \end{array}$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 31/25

A (10) A (10) A (10)

Canetti-Halevi-Katz idea

CCA security

 $\begin{array}{l} M_0, \, M_1 \\ C = Enc(M_b), \, b \in \{0, 1\} \\ \textbf{Goal: find } b, \, \text{allowed to decrypt messages (all but } C). \end{array}$

Enc(pk, M):

 $\begin{array}{l} (\mathsf{VK},\mathsf{SK}) \leftarrow \mathbf{Gen}^{\mathrm{ots}} \\ \mathcal{C} = \mathbf{Enc}^{\prime BE}(\mathsf{VK},\mathcal{M}) \\ \sigma \leftarrow \mathbf{Sign}^{\mathrm{ots}}(\mathsf{SK},\mathcal{M}) \\ \mathrm{return} \ (\mathsf{VK},\mathcal{C},\sigma) \end{array}$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 31/25

Sketch of the security proofs - Traceability

 ${\mathcal A}$ produces a forgery M^\star, Σ^\star that verifies Böhl et al. signature scheme.

- Guess the identity id^* that \mathcal{A} used to forge Σ^* ;
- Program the parameters to solve an hard problem.

Security proof of the Boyen signature

Lattice based-scheme use short basis as *trapdoor* information.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 33/25

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Lattice based-scheme use short basis as *trapdoor* information.

SampleUp
$$\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, \mathbf{A} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{A}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$$

SampleDown $\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, \mathbf{C} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{C}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 33/25

< □ > < □ > < □ > < □ > < □ > < □ >

Security proof of the Boyen signature

Boyen's signature

$$\mathsf{d}^{\mathsf{T}}\left[\frac{\mathsf{A}}{[\mathsf{A}_0+\sum_{i=1}^\ell m_i\mathsf{A}_i]}=\mathbf{0}[q]\right]$$

Idea.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

▶ 4 ≣ ▶ Ξ ≡ ∽ Q C 10/06/2015 34/25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Security proof of the Boyen signature

Boyen's signature

$$\mathsf{d}^{\mathsf{T}}\left[\frac{\mathsf{A}}{[\mathsf{A}_0+\sum_{i=1}^\ell m_i\mathsf{A}_i]}=\mathsf{0}[q]\right]$$

Idea. Set $\mathbf{A}_i = \mathbf{Q}_i \mathbf{A} + h_i \mathbf{C}$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

・ 得 ト ・ ヨ ト ・ ヨ ト

Security proof of the Boyen signature

Boyen's signature

$$\mathsf{d}^{\mathsf{T}}\left[\frac{\mathsf{A}}{[\mathsf{A}_0+\sum_{i=1}^\ell m_i\mathsf{A}_i]}=\mathsf{0}[q]\right]$$

Idea. Set
$$\mathbf{A}_i = \mathbf{Q}_i \mathbf{A} + h_i \mathbf{C}$$

 $\rightarrow \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i) \mathbf{A} + h_M \mathbf{C} \right]} \right]$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

↓ ▲ 書 ト 書 ■ → へ ○
10/06/2015 34/25

Security proof of the Boyen signature

Boyen's signature

$$\mathsf{d}^{\mathsf{T}}\left[\frac{\mathsf{A}}{[\mathsf{A}_0+\sum_{i=1}^\ell m_i\mathsf{A}_i]}=\mathsf{0}[q]\right]$$

Idea. Set
$$\mathbf{A}_i = \mathbf{Q}_i \mathbf{A} + h_i \mathbf{C}$$

 $\rightarrow \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i \right) \mathbf{A} + h_M \mathbf{C}} \right]$

⇒ We can use SampleUp in the real setup and SampleDown in the reduction whenever $h_M \neq 0$.

Fabrice Mouhartem

10/06/2015 34/25

Security proof of the Boyen signature

Recall

$$\mathbf{A}' := \begin{bmatrix} \mathbf{A} \\ \mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ (\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i) \mathbf{A} + h_M \mathbf{C} \end{bmatrix}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

► 4 Ξ ► Ξ = 少 Q C 10/06/2015 35/25

< □ > < □ > < □ > < □ > < □ > < □ >

Security proof of the Boyen signature

Recall

$$\mathbf{A}' := \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i) \mathbf{A} + h_M \mathbf{C} \right]} \right]$$

Forgery. A outputs $\mathbf{d}^{\star} = [\mathbf{d}_1^{\star T} | \mathbf{d}_2^{\star T}]^T$ and $M^{\star} = m_1^{\star} \dots m_{\ell}^{\star}$ such that $\mathbf{d}^{\star T} \mathbf{A}' = 0$.

Security proof of the Boyen signature

Recall

$$\mathbf{A}' := \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i) \mathbf{A} + h_M \mathbf{C} \right]} \right]$$

Forgery. A outputs $\mathbf{d}^{\star} = [\mathbf{d}_1^{\star T} | \mathbf{d}_2^{\star T}]^T$ and $M^{\star} = m_1^{\star} \dots m_{\ell}^{\star}$ such that $\mathbf{d}^{\star T} \mathbf{A}' = 0$. If $h_{M^{\star}} = 0$, then

 $\underbrace{\left(\mathbf{d}_{1}^{\star T} + \mathbf{d}_{2}^{\star T}\left(\mathbf{Q}_{0} + \sum_{i=1}^{\ell} m_{i}^{\star}\mathbf{Q}_{i}\right)\right)}_{\text{valid SIS solution}} \mathbf{A} = \mathbf{0}[q]$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 35/25

From Static to Dynamic Our solution

Remark

Boyen's signature: the reduction aborts if C vanishes. Böhl et al.: answer the request by "programming" the vector

$$\mathbf{u}^{T} = \mathbf{d}^{\dagger T} \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_{0} + \sum_{i=1}^{\ell} \mathrm{id}_{i}^{\dagger} \mathbf{Q}_{i}) \mathbf{A} \right]} - \mathbf{z}_{i^{\dagger}}^{T} \mathbf{D}.$$

Problem

In this request, a sum of two discrete gaussian is generated differently from the real **Join** protocol. \Rightarrow Not the same standard deviation.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 36/25

From Static to Dynamic Our solution

Problem $z_{i,0}, z_{i,1}, z_i \in \mathbb{Z}^m$

Consequence.

$$\{(\mathbf{z}_{i}, \mathbf{z}_{i,0}, \mathbf{z}_{i,1}) | \mathbf{z}_{i,0} \leftrightarrow D_{\sigma_{0}}, \mathbf{z}_{i,1} \leftrightarrow D_{\sigma_{1}}, \mathbf{z}_{i} = \mathbf{z}_{i,0} + \mathbf{z}_{i,1}\}$$

$$\& \Delta$$

$$\{(\mathbf{z}_{i}, \mathbf{z}_{i,0}, \mathbf{z}_{i,1}) | \mathbf{z}_{i} \leftarrow D_{\sigma}, \mathbf{z}_{i,0} \leftarrow D_{\sigma_{0}}, \mathbf{z}_{i,1} = \mathbf{z}_{i} - \mathbf{z}_{i,0}\}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 37/25

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 38/25

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Measurement of the distance between two distributions

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

▲ Ξ ▶ Ξ = ∽ 𝔅 𝔅
 10/06/2015 38/25

< □ > < □ > < □ > < □ > < □ > < □ >

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- Measurement of the distance between two distributions
- Multiplicative instead of additive
- Probability preservation:

$$Q(A) \ge P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 38/25

(3)

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- Measurement of the distance between two distributions
- Multiplicative instead of additive
- Probability preservation:

$$Q(A) \ge P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

```
Hybrid argument:

Real game \rightarrow Game 1 \rightarrow Game 2 \rightarrow Hard Game

\uparrow

\downarrow

\downarrow

Hardness assumptions \rightarrow
```

10/06/2015 39/25

イロト イポト イヨト イヨト

```
Hybrid argument:

Real game \rightarrow Game 1 \rightarrow Game 2 \rightarrow Hard Game

\uparrow

\downarrow

\downarrow

Hardness assumptions \rightarrow
```

Bound winning probability.

(4月) (4日) (4日) 크는

```
Hybrid argument:

Real game \xrightarrow{\uparrow} Game 1 \xrightarrow{\uparrow} Game 2 \xrightarrow{\rightarrow} Hard Game

\stackrel{\uparrow}{\downarrow} Hardness assumptions \xrightarrow{\uparrow}
```

Bound winning probability. Can be done through probability preservation!

(本間)》 (本語)》 (本語)》 (王)는

Bound winning probability. Can be done through probability preservation!

Recall

$$Q(A) \geqslant P(A)^{\frac{a}{a-1}}/R_{a}(P||Q)$$

```
\Pr[W_2] \geqslant \Pr[W_1]^{\frac{a}{a-1}} / R_a(Game_1 || Game_2)
```

For instance: $\Pr[W_2] \ge \Pr[W_1]^2 / R_2(Game_1 || Game_2)$

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 39/25

Rényi Divergence In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 40/25

A B A A B A

Rényi Divergence In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

 \rightarrow In our setting, implies $q \sim \exp(\lambda)$ (smudging)

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 40/25

A B K A B K

Rényi Divergence In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

- \rightarrow In our setting, implies $q \sim \exp(\lambda)$ (smudging)
- $\rightarrow\,$ Higher cost compared to usual lattice-based crypto parameters

Fabrice Mouhartem

Lattice-Based Group Signature for Dynamic Groups

10/06/2015 40/

40/25