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Abstract
Lattice-based cryptography is a field of research that has been very active in the last decade. It

offers expressiveness along with asymptotic efficiency and seems to the best of our knowledge to
be resistant to quantum computers attacks. Advanced cryptography would then benefit from being
designed from lattice assumptions. Along those primitives, there is one that grabs our interest: group
signatures; it is namely a protocol that allows an user to sign on behalf of a group while keeping his
anonymity. Nowadays all lattice-based group signatures are built on the static model, where the group
is fixed at its creation and cannot be changed without rerunning all the setup again (and redistributing
the keys). This is why we construct during this internship a dynamic group signature scheme based
on lattices that is somewhat efficient (as efficient as the best known algorithms for weaker purpose).
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1 Introduction

Cryptology is the study of methods to ensure the existence of secure communication. Its goals are – among
other things – to provide tools to guarantee data-integrity, privacy and authentications. Since Caesar
cipher, many studies have been done to achieve this goals and lead to nowadays advanced cryptography
primitives.

A so called advanced primitive is a method to solve more advanced problems than historical ones.
Two important cryptographic primitives are public-key encryption and digital signature schemes. They
are overly used in applied cryptography such as opening a trusted channel and ciphering in TLS/SSL. But
there are also more complex problems where those simple primitives are not sufficient. For this kind of
applications, we sometimes rely on more advanced tools like identity-based encryption, zero-knowledge
proofs [21, 22], multi-party computation protocols or privacy-enhancing cryptographic primitives.

Group signature [19] is one of those advanced primitive. It aims to provide a way to guarantee
that a message was sent by a group member – authentication and data integrity – without leaking any
information about which member signed it – privacy – unless an opening authority decides to open
the signature [7]. More precisely, group signatures allow members of a population of users (which is
administered by a group manager) to sign anonymously messages in the name of that population. The
signature verifier will be convinced that the signature comes from some group member, but without
knowing which one. At the same time, group members remain accountable for the messages they sign
since, if necessary, an authority is able to determine the signer’s identity using some trapdoor information.
The latter operation is known as the signature opening operation.

Group signatures have many applications. A basic example is intelligent cars [24]. Let us assume that
we have cars that can communicate with each other, for instance to transmit traffic information. We want
that no malicious opponent is able to say “Hello, I am a car equipped with a transmitter for the system
and an accident occurred in this road”. A first solution can be to sign every messages, but this suffers
from two major issues. At first there is a verification key database of N cars to be kept updated, and then
anyone listening the traffic can trace a given car. A solution to this problem is to use group signatures,
as suggested in [12]: at setup time, the group manager – here the car company – builds a group public
key. Thereafter, each member – the cars – joins interactively the group by communicating with the group
manager. Hence, each car can attest its messages without explicitly identify itself, and every car can
verify that it is a car who send the message. Moreover, in case of accident, an opening authority – the
police – can open the signatures to know who sent messages (if there is a fake message for instance).

There are many other possible applications to group signatures, such as trusted computing platforms
or protecting the privacy of users in public transportation: by issuing a group signature on the current
date/time, we can prove to the TCL (Transports en Commun Lyonnais, the public transportation company
in Lyon) that we have a valid subscription without letting the system link our metro rides together or infer
information about their frequency. In a more pragmatic point of view, we can just think the gate opening
in a building: employees of a company can prove that they are the right to enter the company’s building
in the morning without revealing to the managers when they arrive or leave.

In the last five years, the research community has considered the problem of designing group signature
schemes whose security relies on the hardness of lattice problems. One of the motivations for this is
the threat of quantum computers, which would break all known efficient group signature constructions
proposed before 2010. It is then an important task to construct group signatures that will resist in the
presence of quantum adversaries.

Nowadays, the most efficient constructions based on lattices are for static group [31, 35, 37] only.
This means that, after a setup phase during which the group manager gives private keys to all group
members, no new group member can join the group. In other words, the population of the group is frozen
after the setup phase. Therefore, we are not able to add a group member without re-starting the setup
phase! As a first attempt to deal with dynamically-changing groups, Langlois et al. [33] proposed a
group signature scheme that supports verifier-local revocation [11], which is a revocation mechanism
where the revocation messages are only sent to signature verifiers. There are protocols that achieve quite
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practical dynamic group signatures [12, 23], but they are based on discrete-logarithm-related hardness
assumptions, which are known not to resist quantum attacks. We will further discuss about it in section 2.

It is important to notice that dynamic group signatures are not just a simple extension of static
group signatures since dynamic schemes involve two distinct authorities (instead of one in static groups)
and should satisfy additional security properties. For example, in dynamic group signatures, the group
manager should not be able to sign messages that will be opened to honest group members. We will
explain these difficulties in more details in section 2. While we will try to start from a static scheme and
adapt it to the dynamic setting, we will see that the problem is really not straightforward and we will
discuss on the difficulties.

1.1 Our Contributions

Initially this internship was entitled: “Designing Dynamic Group Signature Scheme and Adaptive
Oblivious Transfer using Lattices”. Oblivious Transfer schemes are used to make anonymous data
transfers from a database. Our first idea was that designing a dynamic group signature would gives us
techniques to go forward oblivious transfer. In ACNS’15, however, Blazy and Chevalier [9] proposed a
partial solution to the oblivious transfer problem. In this internship, we thus focused on dynamic group
signature. Our main contribution is a first example of lattice-based group signatures for dynamic groups,
where new group members can be added at any time.

One can think that making a static group signature scheme into a dynamic scheme can easily be done
due to the similarities of the schemes and security requirements.

However, designing a lattice-based dynamic group signature scheme has been left as an open problem
for 4 years. One reason is that in the dynamic setting, the opening authority (which can identify the
author of any signature if needed) and the group manager (which delivers group membership certificates
to users) are distinct entities, and they thus need to have their own secrets. This leads to more complex
structures to play with in order to keep the scheme secure. Another difficulty is that dynamic group
signatures involve additional security notions that are not present in the security models of static group
signatures. A requirement of dynamic group signatures is that, even if the group manager and the opening
authority collude together and with dishonest group members, they will not be able to create signatures
that will be opened to some honest group member who did not sign the corresponding message. For this
purpose, each group member needs a membership secret sec which is used for generating signatures and
which remains unknown to the group manager and the opening authority. When the user joins the system,
he chooses a membership secret for which he sends a corresponding public value v to the group manager
(for instance the syndrome of a short vector according to a given matrix). The latter public value v is then
certified by means of a membership certificate cert which is generated by the group manager to certify
that the user’s public value (and then the underlying membership secret sec) really belongs to some group
member. When the user signs a message, he generally proves the knowledge of both cert and sec (as well
as v) without revealing them and without revealing anything except that they form a valid credential.

The fact that only the user knows sec is the reason that prevents the group manager and the opening
authority from generating a signature for which the opening operation reveals the public value v. In the
lattice setting, the difficulty is to find a way to define a membership secret that is properly bound to some
membership certificate.

In this internship, we solved this problem by adapting a recent construction proposed by Ling, Nguyen,
and Wang [35] in the setting of static groups.

The rest of the report is organized as follows: we start with a state of the art of group signatures and
the lattice-based cryptography around it. Then we introduce the concepts we will work with in section 3,
and finally we present our protocol and discuss about it.
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2 State of the art

As depicted in the title of the section, we will have a look at the state of the art in group signatures,
especially in the dynamic setting.

Group signature schemes were first introduced by Chaum and Van Heyst [19] in 1991. In this setting,
there are a group manager and a certain number of group members. To this group is associated an unique
public key gpk and each group member i is given a secret key gsk[i] on which he can produce a valid
signature with respect to gpk. The requirements in [19] is that the group manager has the knowledge of a
secret key gmsk that can be used to extract the identity of the signer of a given signature that is valid on
gpk. On the other hand you should not be able to open a signature without the secret key gmsk. Chaum
and Van Heyst [19] then describe the notions on traceability and anonymity respectively. We then had at
this time the basic of group signatures as it is common to see.

Since then more requirements were added on top of this basic core. For instance group signature
standard requirements as unforgeability, and also requirements that are more specific to the group setting
like exculpability [4], unlinkeability or framing resistance [20]. Hence it ended in a chaos of different
definitions that claim to be better than others and no accepted definition of group signatures.

This is why in 2003, Bellare, Micciancio, and Warinschi [7] proposed a clean setting of group
signatures to go toward provable security that is nowadays admitted as the formal definition of group
signatures. They summed up those security requirements into correctness, full-traceability and fully-
anonymity. And evocate in the last section [7, sec. 5] the possibility to extend their scheme to the dynamic
setting.

In 2005, Bellare, Shi, and Zhang [8] had the same work done for the dynamic setting to give a
formalism for dynamic group signatures. The reason is that beyond the fact that it is costly to rerun
the setup at each join, it requires a high level of trust to give to the group manager, which one may not
want to afford. In the dynamic group setting, there are two authorities: the group manager (the issuer)
and the opening manager (the opener). The only trusted phase is the setup phase were the group public
key gpk, and the opening key YOA. It is mandatory to have two authorities to provides more robustness
against authorities corruption. They gives three security requirements: anonymity, traceability and
non-frameability (the same as in section 1.1).

In 2006, Kiayias and Yung [30] gave an equivalent framework in term of security for dynamic
group signature scheme that we will use in this report (only for convenience). The difference lies in the
algorithm descriptions and in the security requirements (even if they are close). The requirements in this
scheme: anonymity, mis-identification (equivalent to traceability) and non-frameability. In the algorithm
description, there is no judge algorithm which goal is to verify the correctness of the opening, because
there is no proof of correct opening in this model.

Many group signature schemes has been proposed, based on traditional number-theory assumptions,
such as [16, 5, 12]. But if they can be very efficient such as Ateniese et al. [5] protocol or Boneh et al.
[12] scheme, they are sensible to quantum computers’ attack [39]. Designing a group signature that is
based on lattice assumptions has been a quite active topic lately. In the most significant changes: in 2010,
Gordon et al. [28] proposed the first group signature scheme based on lattice assumptions where signature
size is linear in the number of group member (more precisely N · Õ(n2) where n is the security parameter
and N the size of the group); in 2013, Laguillaumie et al. [31] gave a construction where signature size
has been shrunk to logarithmic size (namely logN · Õ(n)). Since then, most of the works has been done
to reduce the group public key size to constant size [37] (however, it still requires about 1.5 GB for the
public key under classical security parameters, which is far for being usable, for instance in embedded
systems such as a smart card for public transportation), or reduce the hardness assumptions [35].

As far as I know, today there is no dynamic scheme based on post-quantum assumptions.
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Figure 1: A lattice and two different basis

3 Definitions

In this part, we will introduce the different definitions that will be used all along this report. We will
firstly present the lattices and the associated security assumption, then our framework along with its
security notions.

Notations. All vectors will be written in bold lower-case letters, bold upper-case letters will be used for
matrices. If b and c are two vectors of compatible dimensions, their inner product will be denoted by
〈b,c〉. Furthermore, if b ∈ Rn, its euclidean norm will be denoted by ‖b‖. This notation is extended to
any matrix B ∈ Rm×n with columns (bi)i≤n by ‖B‖= maxi≤n ‖bi‖. If B is full-rank, we let B̃ denote its
Gram-Schmidt orthogonalisation.

3.1 Lattices

Lattices were first used in cryptography by Regev [38] in 2005. He introduced the learning with errors
(LWE) problem which has been massively used to construct cryptographic primitives [32].

Lattice based cryptography offers the advantage of an expressive system – which allows us to build
advanced primitives – along with asymptotic efficiency.

3.1.1 Lattices Properties

Definition 1 (Lattices). A lattice Λ is the set of all integer linear combinations of some linearly independ-
ent vectors, called a basis, (bi)i≤n belonging to Rn.

A basis is not unique, as shown in figure 1, and that is intuitively what makes it expressive and hard
as we will later discuss in section 3.1.2.

Classically defined lattices we will use on this report are:

Definition 2 (Classical Lattices). For integer q prime, matrix A ∈ Zm×n
q and vector u ∈ Zn

q, define:

Λ
⊥
q (A) =

{
x ∈ Zm : xT ·A = 0 mod q

}
Λ

u
q(A) =

{
x ∈ Zm : xT ·A = uT mod q

}
Definition 3 (Gaussian distribution over a lattice). For a lattice Λ and a real σ > 0 we define the Gaussian
distribution centered in 0 over the lattice Λ and parameter σ by DΛ,σ [b] ∼ exp

(
−π‖b‖2/σ2

)
for all

vector b in Λ.

We will massively use the following lemma, stating that a vector sampled from DΛ,σ is short with
overwhelming probability:

Lemma 1 ([6, Le. 1.5]). For any lattice Λ⊆Rn and σ > 0, we have Prb←↩DΛ,σ [‖b‖ ≤
√

nσ ]≥ 1−2−Ω(n).

From a computational point of view, Gentry, Peikert, and Vaikuntanathan [26] show that discrete
Gaussian distribution over a lattice can be sampled efficiently given a short basis of the lattice:
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Lemma 2 ([14, Le. 2.3]). There exists a probabilistic polynomial time (PPT) algorithm GPVSample
that takes as inputs a basis B of a lattice Λ ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(

√
logn), and outputs

vectors b ∈ Λ with distribution DΛ,σ .

We also need an equivalent algorithm stating that the trapdoor TA ∈ Zm×m
q of a matrix A ∈ Zm×n

q
allows us to sample a short vector x ∈ Zm

q such that xT A = uT mod q for a given vector u ∈ Zn
q.

Lemma 3 ([1, Le. 8]). There exists a PPT algorithm SamplePre(A,TA,u,σ) that returns a vector
x ∈ Λu

q(A) sampled from a distribution statistically close to DΛu
q(A),σ whenever Λu

q(A) is non empty.

3.1.2 Security Assumptions

We have already mentioned the LWE problem as a standard lattice hardness assumption.

Definition 4 (Learning With Errors [38]). For an integer p = Poly (n) and a distribution χ on Zp. The
problem is the following: for any vector s∈Zn

p, given arbitrarily many samples from the LWE distribution,
namely (a,〈a,s〉+ e) with a uniform in Zn

p and e samples from χ , the goal is to find s for the search LWE
problem, or distinguish this distribution from U

(
Zn

p×Zp
)

for the decisional LWE problem.

We can notice that search LWE and decisional LWE are equivalent [38], and that the distribution χ is
usually a Gaussian distribution as explained in definition 3.

Remark 1. It is customary in lattice-based cryptography whereas classical cryptography to use as a
security parameter the dimension n of the LWE secret instead of the security level in classical cryptography
(namely the logarithm of the number of minimum elementary steps to solve the problem of the hardness
assumption). The main reason is that the hardness of the LWE problem depends on three parameters:
n,q,α where α conditions the standard deviation of χ . Taking q = Poly (n) and α−1 = Poly (n) leads to
best known attacks on LWE to be exponential in n, which means that we can approximate λ by n. This
choice of parameters usually gives reasonable size range and are sufficient for most of the purpose in
cryptography.

In the following, we select q to be exponentially large in n and not polynomially. This lead to a less
efficient protocol, but easier to prove, as discussed in section 4.1. One interesting question could be to go
down to polynomially large parameters.

We will mainly rely in this report on the hardness assumption of Inhomogeneous Short Integer
Solution (ISIS).

Definition 5 (ISIS problem [26, Def. 5.6]). The inhomogeneous short integer solution problem ISISm,q,β
is defined as follows: given an integer q, a matrix A ∈ Zn

q, a syndrome u ∈ Zn
q and a real β , find an integer

vector e ∈ Zm such that Ae = u mod q and ‖e‖ ≤ β .

Informally it is finding a short vector in the lattice Λ⊥(A). Finding a vector in this lattice is just
solving a linear algebra system, which is polynomial. But adding the shortness constraints harden the
problem. The basic idea is that if we have a short basis of the lattice, finding a short vector in it is easy,
we just have to take small linear combinations of the short vectors. But having a long and not orthogonal
basis as the blue dashed basis in figure 1 makes this search much longer.

Gentry et al. [26, Sec. 9] gave a reduction from worst-case lattices problems to SISm,q,β (the special
case where u in ISIS is 0) with approximation factor γ = Õ (β

√
n). In other words it means that solving

SIS is an hard problem.
Then we have the following: if we have a short basis, we can find a short vector in a lattice, if we

don’t it is a hard problem. This statement means that we have a breeding ground for cryptography: we
have a hard problem that becomes easy in the presence of a secret information: a trapdoor.
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3.1.3 Algorithmic Point of View

We will also need some efficient algorithms to manipulate the matrices as lattices.
First of all, we must be able to construct random matrices along with a short basis for its orthogonal

lattice Λ⊥q , which has been described by Alwen and Peikert [2].

Lemma 4 ([2, Th. 3.2]). There exists a PPT algorithm TrapGen that takes as inputs 1n, 1m and an
integer q≥ 2 with m≥Ω(n logq), and outputs a matrix A ∈ Zm×n

q and a basis TA of Λ⊥q (A) such that A
is within statistical distance 2−Ω(n) to U(Zm×n

q ), and ‖T̃A‖ ≤ O(
√

n logq).

We can notice that Lemma 4 is often combined with the sampler from Lemma 2. Micciancio and
Peikert [36] proposed a more efficient approach in 2012 to do this combined task, which should be
preferred in practice but, for the sake of simplicity, we will present our scheme using TrapGen.

More algebraically, we may want to be able to manipulate matrices and append more verification
information (for instance for the Boyen’s signature [13] we use as a building block for our protocol).
Which can be seen as an extension of the initial lattice. For this purpose, we may use the following
algorithm:

Lemma 5 ([18, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as inputs a matrix B ∈Zm′×n
q

whose first m rows span Zn
q, and a basis TA of Λ⊥q (A) where A is the top m× n submatrix of B, and

outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

This kind of operation is also called basis delegation.

3.2 Zero-knowledge Proofs

Another important notion to have in mind is the Zero-Knowledge proof [27] (ZK proof) which is an
important cryptographic primitive that is used to provide a way to ensure the validity of a statement
without revealing any more information.

The basic idea is that there is two interactive algorithms: the prover P (potentially unbounded) and the
verifier V (with polynomially bounded computational power). The prover aims to convince the verifier
that he knows an element x from a language L that defines the set of true statements. To ease the task of
the verifier, it is common to use a witness w for the element x, and prove that (x,w) ∈R for a certain
relation R. We will work on this framework.

This primitive can be used for instance to solve the identification problem, which is the problem to
prove your identity without letting someone else proving that he is you, even if they see the transcript of
the proof. For instance our overly used login/password methods are not solving this problem, because the
entity knows your password [29].

We will rely on non-interactive zero-knowledge proofs (NIZK) in our scheme. To do that we will use
the Fiat-Shamir heuristic [25], which relies on Σ-protocols and aims to adapt it into a NIZK.

Definition 6 (Σ-Protocols [22, Def. 1]). A couple of interactive algorithm (P,V) where V is a PPT
algorithm is called a Σ-protocols for the relation R if and only if:

– The interaction follows a 3-round move :

1. P sends a message m, sometimes called a commitment

2. V sends a random challenge c

3. P sends back an answer s to the verifier, who decides to accept or reject the proof (respectively
return 1 or 0)

Hence a transcript is of the form (m,c,s).

– Completeness: if P,V follows the protocols on a valid input (x,w) ∈R, then the verifier always
accepts.
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– Special soundness: from any pair of accepting transcripts (m,c,s) and (m,c′,s′) where c and c′

are two different challenges, one can efficiently compute w such that (x,w) ∈R.

– Special honest-verifier zero-knowledge: there exists a PPT simulator M which on input x and a
random challenge c outputs an accepting transcript of the form (m,c,s) with the same probability
distribution as real conversations between the honest prover and verifier on input x.

Remark 2. We can then work on Σ-protocols instead of zero-knowledge proofs as they are simpler objects
to manipulate. For instance we can build an OR-proof, which means that from k Σ-protocols proving a
statement, we can build a proof for the disjunction of those statements [21, 22]. We will use this property
later on.

We can moreover notice that as we will use a variant of Stern’s protocol [40] described in appendix D.1,
where we need three transcripts to extract the secret. Then our soundness assumption will not be the
described special soundness, but a weaker version of it.

3.3 One-time Signatures

For security purpose we will also need another crytographic primitive: one-time signature.

Definition 7 (One-time signature). A one-time signature scheme consists of a triple of algorithms
Πots = (G ,S ,V ) such that, on input of a security parameter 1n, G generates a one-time key pair
(SK,VK); S is a possibly randomized algorithm that outputs a signature sig←S (SK,M) on input of
SK and M; and V (VK,sig,M) is a deterministic algorithm that outputs 1 or 0. The standard correctness
requirement mandates that V always accepts the signatures generated by S .

In a strongly unforgeable one-time signature, the adversary is not only unable to forge a signature
on a new message but, in addition, no PPT adversary can create a new signature for a previously signed
message.

Definition 8 (Strong unforgeability). Πots = (G ,S ,V ) is a strongly unforgeable one-time signature if
the probability

AdvOTS(n) = Pr
[
(SK,VK)← G (1n); (M,St)←F (VK); sig←S (SK,M);

(M′,sig′)←F (VK,M,sig,St) : V (VK′,sig′,M′) = 1∧ (M′,sig′) 6= (M,sig)
]
,

is negligible for any PPT forger F , where St denotes F ’s state information across stages.

3.4 Gentry-Peikert-Vaikuntanathan’s IBE scheme

One other scheme we will rely on will be the GPV’s Identity Based Encryption scheme [26].

Definition 9 (Identity Based Encryption). An Identity Based Encryption (IBE) scheme is a tuple of
algorithm (Setup,Extract,Enc,Dec) such that: on input of a security parameter 1n, Setup outputs a
master key pair (mpk,msk); on input mpk,msk and an identity id, Extract outputs skid which is the secret
key of the identity id. Then Enc from the master public key mpk, a message M and an identity id outputs
a ciphertext C; and Dec, from the master public key mpk, the private key sk′id and a ciphertext C outputs a
message M or a decryption error symbol ⊥.

The goal of an IBE scheme is to simplify the key management. To cipher a message to someone, you
just need his/her identity, which can be for instance his/her e-mail address.

Definition 10 (GPV’s IBE). The GPV’s IBE uses a hash function H : {0,1}∗→ Zn
q modeled as a random

oracle. In the following χ denotes the LWE distribution. It is described as follows:

Setup(1n): Using TrapGen(1n,1m,q) we generates a random matrix A along with its trapdoor TA. Then
the master public key mpk := A and the master secret key msk := TA
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Figure 2: Relations between the protagonists in a dynamic group signature scheme

Extract(A,TA, id): If the identity has already been queried, return the same skid. Otherwise, let g=H(id)
and choose a decryption key skid using Lemma 3 to have a preimage of g with respect to the matrix A.
More formally we return e = SamplePre(A,T,g,σ), and we store the couple (id,e).

Enc(A, id,b): To encrypt a bit b ∈ {0,1} to identity id, let g = H(id). We sample s from U
(
Zn

q
)

and we
set p = AT s+x∈Zm

q , where x←↩ χm. Output the ciphertext (p,c = gT s+x+b · bq/2c)∈Zm
q ×Zq,

where x←↩ χ .

Dec(e,(p,c)): computes b′ = c− eT p ∈ Zq. Output 0 if b′ is closer to 0 than to bq/2c modulo q.
Otherwise output 1.

The multi-bit version we will use just encrypts k = Poly (n) bits by creating k independent syndromes
gi in the Enc part. The idea it to use a different hash function mapping id to multiple uniform syndromes
in Zn

q, one for each bit of the message.
Explicitly, H then maps to Zk×n

q which are seen as k uniform independent syndromes. Extract thus
returns a short matrix E∈Zm×k consisting of row-wise preimages for G∈Zk×n

q with respect to A∈Zm×n
q ,

and the ciphertext is then composed of two vectors. The first one remains the same, but the second one is
then Gs+x2 +bbq/2c where G = H(id), x2←↩ χk and b is the multi-bit message. That corresponds to a
bit-wise ciphering using the GPV’s IBE. Hence the deciphering is done by computing b′ = c−GT p and
the components of the resulting decryption are 0 if the corresponding component in b′ is closer to 0 than
to bq/2c, and 1 otherwise.

Another possible extension is to allow non-binary messages. To do this we just change the step bq/2c
into bq/pc.

3.5 Dynamic Group Signature

In this section we will present the definition of group signatures, and the security requirements.
Informally, a group signature is a scheme that allows a group member to attest that a message was

provided by a member of a group without being altered during the process and preserving the anonymity
of the users. This primitive was introduced by Bellare, Micciancio, and Warinschi [7] in 2003 and was
extended to dynamic groups by Bellare, Shi and Zhang (BSZ) in 2005 [8].

In the setting of dynamic groups, the syntax of group signatures includes an interactive protocol which
allows users to register as new members of the group at any time. The syntax and the security model
are those defined by Kiayias and Yung [30]. Like the very similar BSZ model [8], the Kiayias-Yung
(KY) model assumes an interactive join protocol whereby a prospective user becomes a group member
by interacting with the group manager. This protocol provides the user with a membership certificate,
certi, and a membership secret, seci.

We denote by N ∈ Poly(n) the maximal number of group members.

Definition 11 (Dynamic Group Signature). A dynamic group signature scheme consists of the following
algorithms or protocols.
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Setup(1n,N): given a security parameter n and a maximal number of group members N ∈ N, this
algorithm is run by a trusted party to generate a group public key Y , the group manager’s private
key SGM and the opening authority’s private key SOA. Each key is given to the appropriate
authority while Y is made public. The algorithm also initializes a public state St comprising a set
data structure Stusers = /0 and a string data structure Sttrans = ε .
In the following, all algorithms have access to the public parameters Y .

Join: is an interactive protocol between the group manager GM and a user Ui where the latter becomes
a group member. The protocol involves two interactive Turing machines Juser and JGM that both
take Y as input. The execution, denoted as [Juser(n,Y ),JGM(n,St,Y ,SGM)], ends with user
Ui obtaining a membership secret seci, that no one else knows, and a membership certificate
certi. If the protocol is successful, the group manager updates the public state St by setting
Stusers := Stusers∪{i} as well as Sttrans := Sttrans||〈i, transcripti〉.

Sign(certi,seci,M): given a membership certificate certi, a membership secret seci and a message M,
this probabilistic algorithm outputs a signature σ .

Verify(σ ,M): given a signature σ , a message M and a group public key Y , this deterministic algorithm
returns either 0 or 1.

Open(SOA,M,σ ): takes as input a message M, a valid signature σ w.r.t. Y , the opening authority’s
private key SOA and the public state St. It outputs i ∈ Stusers∪{⊥}, which is the identity of a group
member or a symbol indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.

The correctness requirement basically captures that, if all parties honestly run the protocols, all
algorithms are correct with respect to their specification described as above.

As mentioned in section 2, the Kiayias-Yung model [30] considers three security notions: the notion
of security against misidentification attacks requires that, even if the adversary can introduce users under
its control in the group, it cannot produce a signature that traces outside the set of dishonest users. The
security against framing attacks implies that honest users can never be accused of having signed messages
that they did not sign, even if the whole system conspired against them. The anonymity property is also
formalized by granting the adversary access to a signature opening oracle as in the models of [8].

Correctness for Dynamic Group Signatures. Following the Kiayias-Yung terminology [30], we say
that a public state St is valid if it can be reached from St = ( /0,ε) by a Turing machine having oracle
access to JGM. Also, a state St ′ is said to extend another state St if it is within reach from St.

Moreover, as in [30], when we write certi �Y seci, it means that there exists coin tosses ϖ for
JGM and Juser such that, for some valid public state St ′, the execution of the interactive protocol
[Juser(n,Y ),JGM(n,St ′,Y ,SGM)](ϖ) provides Juser with 〈i,seci,certi〉.

Definition 12 (Correctness). A dynamic group signature scheme is correct if the following conditions
are all satisfied:

(1) In a valid state St, |Stusers|= |Sttrans| always holds and two distinct entries of Sttrans always contain
certificates with distinct tag.

(2) If [Juser(n,Y ),JGM(n,St,Y ,SGM)] is run by two honest parties following the protocol and at the
end 〈i,certi,seci〉 is obtained by Juser, then it holds that certi �Y seci.

(3) For each 〈i,certi,seci〉 such that certi �Y seci, satisfying condition 2, it always holds that:

Verify
(
Sign(Y ,certi,seci,M),M,Y

)
= 1

9



(4) For any outcome 〈i,certi,seci〉 of the interaction [Juser(., .),JGM(.,St, ., .)] for some valid state St, if
σ = Sign(Y ,certi,seci,M), then

Open(M,σ ,SOA,Y ,St ′) = i.

We formalize security properties via experiments where the adversary interacts with a stateful interface
I that maintains the following variables:

• stateI : is a data structure representing the state of the interface as the adversary invokes the
various oracles available in the attack games. It is initialized as stateI = (St,Y ,SGM,SOA)←
Setup(n,N). It includes the (initially empty) set Stusers of group members and a dynamically
growing database Sttrans storing the transcripts of previously executed join protocols.

• n = |Stusers|< N denotes the current cardinality of the group.

• Sigs: is a database of signatures created by the signing oracle. Each entry consists of a triple
(i,M,σ) indicating that message M was signed by user i.

• Ua: is the set of users that were introduced by the adversary in the system in an execution of the
join protocol.

• Ub: is the set of honest users that the adversary, acting as a dishonest group manager, introduced in
the system. For these users, the adversary obtains the transcript of the join protocol but not the
user’s membership secret.

When mounting attacks, adversaries will be granted access to the following oracles:

• Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks up stateI and
returns the group public key Y , the GM’s private key SGM and the opening authority’s private key
SOA respectively.

• Qa-join: allows the adversary to introduce users under his control in the group. On behalf of
the GM, the interface runs JGM in interaction with the Juser-executing adversary who plays the
role of the prospective user in the join protocol. If this protocol successfully ends, the interface
increments n, updates St by inserting the new user n in both sets Stusers and Ua. It also sets
Sttrans := Sttrans||〈n, transcriptn〉.

• Qb-join: allows the adversary, acting as a corrupted group manager, to introduce new honest group
members of his/her choice. The interface triggers an execution of [Juser,JGM] and runs Juser in
interaction with the adversary who runs JGM. If the protocol successfully completes, the interface
increments n, adds user n to Stusers and Ub and sets Sttrans := Sttrans||〈n, transcriptn〉. It stores the
membership certificate certn and the membership secret secn in a private part of stateI .

• Qsig: given a message M, an index i, the interface checks whether the private area of stateI

contains a certificate certi and a membership secret seci. If no such elements (certi,seci) exist or if
i 6∈Ub, the interface returns ⊥. Otherwise, it outputs a signature σ on behalf of user i and also sets
Sigs← Sigs||(i,M,σ).

• Qopen: when this oracle is invoked on input of a valid pair (M,σ), the interface runs algorithm
Open using the current state St. When S is a set of pairs of the form (M,σ), Q¬S

open denotes a
restricted oracle that only applies the opening algorithm to pairs (M,σ) which are not in S.

• Qread and Qwrite: are used by the adversary to read and write the content of stateI . Namely, at
each invocation, Qread outputs the whole stateI but the public/private keys and the private part of
stateI where membership secrets are stored after Qb-join-queries. By using Qwrite, the adversary
can modify stateI at will as long as it does not remove or alter elements of Stusers, Sttrans or
invalidate the public state St: for example, the adversary is allowed to create dummy users as long
as he/she does not re-use already existing certificate tags.
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Using this formalism, we can now properly define the three announced security properties.

Security Against Misidentification Attacks. In a misidentification attack, the adversary can corrupt
the opening authority using the QkeyOA oracle. Moreover, he/she can also introduce malicious users in
the group via Qa-join-queries. His/her purpose is to come up with a valid signature σ?. He/she succeeds if
the produced signature σ? does not open to any adversarially-controlled.

Definition 13. A dynamic group signature scheme is secure against misidentification attacks if, for any
PPT adversary A involved in the experiment hereunder, we have the advantage of A to be:

Advmis-id
A (n) = Pr

[
Expmis-id

A (n) = 1
]
∈ negl(n)

Algorithm 1: Experiment Expmis-id
A (n)

1 stateI = (St,Y ,SGM,SOA)← Setup(n,N);
2 (M?,σ?)←A (Qpub,Qa-join,Qread,QkeyOA);
3 if Verify(σ?,M?,Y ) = 0 then
4 return 0;

5 i = Open(M?,σ?,SOA,Y ,St ′);
6 if i 6∈Ua then
7 return 1;

8 return 0;

Non-Frameability. Framing attacks consider the situation where the entire system, including the group
manager and the opening authority, is colluding against some honest user. The adversary can corrupt the
group manager as well as the opening authority (via oracles QkeyGM and QkeyOA, respectively). He/she is
also allowed to introduce honest group members (via Qb-join-queries), observe the system while these
users sign messages and create dummy users using Qwrite. The adversary eventually aims at framing an
honest group member.

Definition 14. A dynamic group signature scheme is secure against framing attacks if, for any PPT
adversary A involved in the experiment below, it holds that:

Advfra
A (n) = Pr

[
Expfra

A (n) = 1
]
∈ negl(n)

Algorithm 2: Experiment Expfra
A (n)

1 stateI = (St,Y ,SGM,SOA)← Setup(n,N);
2 (M?,σ?)←A (Qpub,QkeyGM,QkeyOA,Qb-join,Qsig,Qread,Qwrite);
3 if Verify(σ?,M?,Y ) = 0 then
4 return 0;

5 if i = Open(M?,σ?,SOA,Y ,St ′) 6∈Ub then
6 return 0;

7 if
(∧

j∈Ub s.t. j=i ( j,M?,∗) 6∈ Sigs
)

then
8 return 1;

9 return 0;
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Full Anonymity. The notion of anonymity is formalized by means of a game involving a two-stage
adversary. The first stage is called play stage and allows the adversary A to modify stateI via Qwrite-
queries and open arbitrary signatures by probing Qopen. When the play stage ends, A chooses a message
M? as well as two pairs (sec?0,cert

?
0) and (sec?1,cert

?
1), consisting of a valid membership certificate and a

corresponding membership secret. Then, the challenger flips a coin d←{0,1} and computes a challenge
signature σ? using (sec?d ,cert

?
d). The adversary is given σ? with the task of eventually guessing the bit

d ∈ {0,1}. Before doing so, he/she is allowed further oracle queries throughout the second stage, called
guess stage, but is restricted not to query Qopen for (M?,σ?).

Definition 15. A dynamic group signature scheme is fully anonymous if, for any PPT adversary A ,

Advanon
A (n) := |Pr [Expanon

A (n) = 1]−1/2| ∈ negl(n)

Algorithm 3: Experiment Expanon
A (n)

1 stateI = (St,Y ,SGM,SOA)← Setup(n);
2
(
aux,M?,(sec?0,cert

?
0),(sec

?
1,cert

?
1)
)
←A (play; Qpub,QkeyGM,Qopen,Qread,Qwrite);

3 if ¬(cert?b �Y sec?b) for b ∈ {0,1} then
4 return 0;

5 if cert?0 = cert?1 then
6 return 0;

7 Picks random d←{0,1}; σ?← Sign(Y ,cert?d ,sec
?
d ,M

?);

8 d′←A (guess; σ?,aux,Qpub,QkeyGM,Q¬{(M
?,σ?)}

open ,Qread,Qwrite);
9 if d′ = d then

10 return 1;

11 return 0;

One can wonder why the revocation is not in the dynamic group signature scheme description, the
reason is only pragmatic. It is a different problem to build a scheme that allows to revoke a group member
than a scheme that allows inserting a group member [23], and it has to be done in a case-by-case fashion.

4 Our Protocol

In this part we will present the scheme that was designed during this internship. As explained in section 1.1
it is an adaptation of the static scheme in [31]. We will first start by a description of the ideas of the
construction, along with the encountered difficulties, then we will end with a formal definition of our
protocol.

4.1 Main Ideas

As explained in section 1.1, we build our protocol from a static group signature. The idea is to change the
key attribution algorithms that gives gpk[i] to the user Ui to make it dynamic through an interactive Join
protocol.

Another main difference is that the Opening Manager OA and the Group Manager GM – namely
the certificate deliverer – are not the same authority, which lead us to separate the secrets that the key
manager and the opening manager have, in such a way that the following hold:

• Anonymity: No one except the opening manager can open a signature
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• Non-frameability: Even if OA and GM collude against you, they cannot build a signature accusing
you.

Our first idea was to adapt the Laguillaumie et al. [31] protocol, which is recalled in Appendix B. In
the latter, each group member receives a unique `-bit identifier id ∈ {0,1}`, with `= logN and where N
is the maximal number of group members. The membership certificate is a small-norm integer matrix
Tid ∈ Z2m×2m such that Tid ·Aid = 0m×n, where

Aid =

[
A

A0 +∑
`
i=1 id[i]Ai

]
∈ Z2m×n

q

is a matrix that encodes the group member’s identity id, similarly as in Boyen’s signature [13]. In order
to sign a message M, the group member uses the trapdoor Tid to generate a short integer vector v ∈ Z2m

such that vT ·Aid = 01×n and generates a proof of knowledge of a pair (v, id) such that vT ·Aid = 01×n. To
achieve non-frameability, our first attempt was to add to the group public key a random matrix D ∈ Zm×n

p
and, when a user joins the system, let that user choose a short integer vector zi ∈ Zm for which he sends
vT

i = zT
i ·D ∈ Z1×n

q to the group manager. Note that computing such a short zi ∈ Zm from vi ∈ Zn
q is a

hard problem, called ISIS, as mentioned in section 3.1.2 (so, the group manager cannot recover the user’s
membership secret seci = zi from what he sees in the joining protocol). Then, the group manager could
use some trapdoor information to return to the user a short integer vector certi = di ∈ Z2m such that

dT
i ·Aid = zT

i ·D, (1)

which certifies the user’s membership secret seci = zi and the corresponding public value vT
i = zT

i ·D.
Our hope was that the user would have been able to sign messages by proving his knowledge of integer
vectors (di,zi) ∈ Z2m×Zm such that (1) is true and without revealing his identity id. The problem is
that the Laguillaumie et al. protocol Laguillaumie et al. [31] requires each user to have a membership
certificate consisting of a full matrix Tid such that Tid ·Aid = 0m×n, and not just a vector di ∈ Z2m such
that dT

i ·Aid = 01×n. This means that, for anonymity reasons, at each new signature, the group member
would have to use Tid to generate a fresh short integer vector di satisfying (1) (for the same vector zi ∈ Zm

which is the user’s membership secret). Unfortunately, we do not know how to do this for a non-zero zi

(in [31], it was possible since there was no membership secret and we had zi = 0m). A tempting solution
is to give to the user a full basis T ∈ Z3m×3m for the lattice Λ⊥(Aid) associated with the matrix

Aid =

 A
A0 +∑

`
i=1 id[i]Ai

D

 ∈ Z3m×n
q ,

which would allow to user to sample short vectors (di,zi) satisfying (1). Unfortunately, it does not provide
a way to attach the user’s membership certificate di to a public syndrome vT

i = zT
i ·D certified by the

group manager.
The problem is to bind the user to a unique public value vT = zT ·D, which the user signs using his

long-term public key registered in some Public Key Infrastructure and which it cannot deny later on. What
we need is a way to: (i) Prevent a cheating user from generating randomized pairs (cert′i,sec

′
i) = (d′i,z′i)

that satisfies the same verification equations but for which the syndrome z′i
T ·D cannot be linked to the

user by means of a regular digital signature generated by the user when he joined the group; (ii) Prevent
a dishonest group manager from creating group signatures for which the opening operation reveals the
public value vT = zT ·D of the user.

To solve this problem, we modify the construction of [31] in order to have membership certificates
consisting of a single integer vector d ∈ Z2m satisfying a relation like (1). For reasons inherent to the
security proof, we actually need to add a non-homogeneous term u ∈ Zn

q and let the user’s secret pair
(cert,sec) consist of vectors (di,zi) ∈ Z2m×Zm satisfying

dT
i ·Aid = zT

i ·D+uT . (2)
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Each group signature is generated by proving the knowledge of a solution to the inhomogeneous short
integer solution problem (ISIS) which is basically a proof of knowledge of a valid pair (di,zi) ∈ Z2m×Zm

satisfying (2), with the additional property that the proof hides idi ∈ {0,1}`. In order to allow the opening
authority to open signatures, the signer additionally generates GPV encryptions (cid,cd,1,cd,2) of the
complete membership certificate (di, idi) (exactly as in most constructions of dynamic group signatures)
and proves the knowledge of (di,zi, idi) ∈ Z2m×Zm×{0,1}` that satisfy (2) and are consistent with the
values encrypted in (cid,cd,1,cd,2). The reason why we use the GPV identity-based encryption scheme
for this reason is that, as in [35], it allows us to prove anonymity in the strong sense (when the adversary
has an opening oracle) by applying the Canetti-Halevi-Katz methodology [17].

To sum up, the signature is produced as follows: the signer uses a one-time signature scheme to
produce a pair (VK,SK). The signer then encrypts – using the GPV master public key and the one-time
verification key as the identity – his membership certificate, and sends it along with NIZK proofs that
everything was done correctly. In the challenge transcript of the proofs, the message intervene in order to
make the signature dependent of the message. Finally he signs everything using the one-time signature
secret key SK and gives the signature along with the verification key and the signed message, namely the
ciphertexts of the identity and the certificate and the proofs that everything went correctly.

The proofs and the signature allows the verifier to check that the signature is valid.
The opening authority then has the knowledge of the master secret key for the GPV IBE. That allows

him, using the identity VK to decipher the identity and the certificate of the signature Σ. Using this piece
of information to verify that the user is indeed in the transcript.

4.2 Description

The parameters are set in such a way that all algorithms described in section 3 can be implemented in
polynomial time and are correct, and so that the security properties hold, in the random oracle model
(ROM) and under LWE and SIS hardness assumptions with known reductions from standard worst-case
lattice problems with polynomial approximation factors. In order to set the parameters, we need to take
into account the “smudging” technique [3, Lemma 2.1], which is used in our security proof, requires a
modulus q that is exponential in the security parameter λ ∈ N. More precisely, we need the following
choice of parameters:

• Parameter q is prime and O(2λ ).

• Parameter n is in O(λ 2).

• Parameter m is ≥ 2n logq. For example, m = O(λ 3).

• The standard deviation σ of the main discrete gaussian is ω(logm).

• The SIS parameter β should satisfy β ≤ q/ω(
√

n logn). For example, we can take β = 2λ/2.

• The parameter p is smaller than σ
√

m≈ 2λ/2 ·λ 3/2.

• The LWE noise distribution χ of the GPV scheme should have a gaussian parameter α such that
αq > 2

√
n (this is necessary for Regev’s reduction).

• The correctness of the opening algorithm (which relies on the GPV decryption algorithm) requires
that, if e ∈ Zm denotes a GPV private key and x is the LWE noise vector, the error term |eT

1 x| ≤
‖e‖ ·qαω(

√
logm)+‖e‖ ·

√
m/2 should be smaller than q/(2p+1).

If we choose αq =O(λ ) and if we choose p and q such that q/(2p+1)≈ 2λ/2/λ 3/2, the correctness
condition becomes

‖e‖λ 5/2 < 2λ/2/λ
3/2,

which is satisfied for any reasonable choice of the gaussian parameter σGPV in the GPV system since we
usually have ‖T̃B‖ ≤ O(

√
n logq).
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The reason for the choice of q is that we will need two additional gaussian parameters σ0,σ1 > 0
such that σ2 = σ2

0 +σ2
1 . These parameters should be chosen in such a way that the joint distribution

(z0,z1) ∈ DZm,σ1 ×DZm,σ2 obtained by sampling z0←↩ DZm,σ0 , z1←↩ DZm,σ1 and computing z = z0 + z1
is statistically indistinguishable from the distribution obtained by sampling z←↩ DZm,σ , z←↩ DZm,σ0 and
computing z1 = z− z0. One way to do this is to use the smudging technique [3, Lemma 2.1], which is to
choose σ1 exponentially larger than σ0.

The scheme relies on the GPV’s IBE as defined in section 3.4. The idea is that we will already have
chosen-ciphertext anonymity [17] as the underlying encryption scheme will be CCA-resistant, according
to Canetti, Halevi, and Katz [17].

In the following, we denote by χ the distribution of the LWE noise in the GPV encryption scheme.
We assume that this distribution is B-bounded (i.e., for any x←↩ χ , |x| ≤ B with overwhelming probability)
for some integer B > 0. If Dm

Z,σ denotes the discrete gaussian distribution with standard deviation σ over
Zm, this distribution is β -bounded where β = σ

√
m.

Setup(1λ ,1N): Given a security parameter λ > 0 and the maximal number of group members N =
2` ∈ poly(λ ), choose parameters n, q, m, p, α and σ as specified above. Choose a hash function
H : {0,1}∗ → {1,2,3}t for some t = Θ(n), which will be modeled as a random oracle in the
security analysis. Then, do the following.

1. Choose a uniformly random matrix D←↩ Zm×n
q . Then, run TrapGen(1n,1m,q) to get A ∈

Zm×n
q and a short basis TA of Λ⊥q (A). This basis allows computing short vectors in Λ⊥(A)

with a gaussian parameter σ ≥ ‖T̃A‖ ·ω(
√

logm). Next, chooses `+ 1 random matrices
A0,A1, . . . ,A`←↩ Zm×n

q .

2. Generate a master key pair for the Gentry-Peikert-Vaikuntanathan IBE scheme in its multi-bit
variant. This key pair consists of a public random matrix B ∈R Zm×n

q and a short basis
TB ∈ Zm×m of Λ⊥(B). This basis will allow us to compute GPV private keys with a gaussian
parameter σGPV ≥ ‖T̃B‖ ·

√
logm.

3. Choose a uniformly random matrix D←↩ Zm×n
q and a vector u←↩ Zn

q.

4. Choose a one-time signature scheme ΠOTS = (G ,S ,V ) and hash functions H0 : {0,1}∗→
Z`×n

q , H1 : {0,1}∗→ Zm×n
q that will be modeled as a random oracle in the security analysis.

The group public key is defined as

Y :=
(
A, {A j}`j=0, B, D, u, Π

OTS, H, H0, H1
)
.

The opening authority’s private key is SOA := TB and the private key of the group manager consists
of SGM := TA. The algorithm outputs

(
Y ,SGM,SOA

)
.

Join(GM,Ui): the group manager GM and the prospective user Ui run the following interactive protocol:

1. Ui samples a discrete gaussian vector zi,0← Dm
Z,σ0

and compute vT
i,0 = zT

i,0 ·D ∈ Z1×n
q . He

sends the vector vi,0 ∈ Zn
q to GM and runs an interactive protocol with GM in order to provide

a zero-knowledge proof of knowledge of zi,0 such that vT
i,0 = zT

i,0 ·D. Then, GM chooses a
fresh `-bit identifier idi = idi[1] . . . idi[`] ∈ {0,1}` samples a short vector zi,1 ← Dm

Z,σ1
and

sends (idi,zi,1) to Ui. The user Ui computes zi = zi,0+zi,1 ∈Zm and vT
i = zi ·D mod q. Then,

he returns vi ∈ Zm
q along with a signature sigi = Signusk[i](vi, idi,zi,1) on the triple (vi, idi,zi,1)

to the GM.
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2. JGM verifies that sigi is a valid signature on (vi, idi,zi,1) w.r.t. upk[i] and aborts if this is not
the case. Otherwise, it uses SGM = TA to certify Ui as a new group member. To this end,
GM defines the matrix

Aidi =

[
A

A0 +∑
`
j=1 idi[ j]A j

]
∈ Z2m×n

q . (3)

Then, GM runs T′idi
← ExtBasis(Aidi ,TA) to obtain a short delegated basis T′idi

of Λ⊥q (Aidi) ∈
Z2m×2m. Finally, GM uses the obtained delegated basis T′idi

to compute a short vector

di =

[
di,1

di,2

]
∈ Z2m such that

dT
i ·Aidi = dT

i ·
[

A
A0 +∑

`
j=1 idi[ j]A j

]
= vT

i +uT mod q (4)

User Ui’s membership certificate consists of the pair certi := (idi,di) and his membership
secret is the integer vector seci = zi ∈ Zm.

3. JGM stores transcripti = (vi, idi, i,upk[i],sigi) in the database Sttrans, sends certi to Juser.
Juser halts if di is not a short vector satisfying (4). Otherwise, Juser defines the membership
certificate as certi = (idi,di). The membership secret seci is defined to be seci = zi ∈ Zm.

Sign(Y ,certi,seci,M): To sign M ∈ {0,1}∗ using the membership certificate certi = (idi,di), where

di =

[
di,1
di,2

]
and the membership secret seci = zi ∈ Zm, the group member Ui generates a one-time

signature key pair (VK,SK)← G (n) and conducts the following steps.

1. Compute G0 = H0(VK) ∈ Z`×n
q and use it as an IBE public key to encrypt idi ∈ {0,1}`.

Namely, compute

(c1,c2) =
(
B · s0 + e1, G0 · s0 + e2 + idi · bq/2c

)
∈ Zm

q ×Z`
q (5)

for randomly chosen s0←↩ χn, e1←↩ χm, e2←↩ χ`.

2. Let p > 0 be an upper bound on entries of di,1, di,2 in absolute value. Compute G1 =
H1(VK) ∈ Zm×n

q and use it as an IBE public key to encrypt di,1 ∈ Zm and di,2 ∈ Zm. Namely,
compute

(c3,c4) =
(
B · s1 + e3, G1 · s1 + e4 +di,1 · bq/pc

)
∈ Zm

q ×Zm
q (6)

and

(c5,c6) =
(
B · s2 + e5, G1 · s2 + e6 +di,2 · bq/pc

)
∈ Zm

q ×Zm
q (7)

for randomly chosen s1,s2 ←↩ χn, e3,e4,e5,e6 ←↩ χm. We can notice that G0,G1 are syn-
dromes for the multi-bit version of Gentry-Peikert-Vaikuntanathan’s IBE scheme as described
in section 3.4.

3. Run the protocol of [35] in order to prove the knowledge of short vectors s0,s1,s2 ∈ Zn,
di,1,di,2,zi ∈ Zm and idi ∈ {0,1}` that satisfy relations (5), (6), (7) as well as

dT
i,1 ·A+dT

i,2 ·A0 +∑
i=1

(idi[i] ·dT
i,2) ·Ai− zT

i ·D = uT ∈ Zn
q. (8)

If we define the matrices

P0 =

(
B Im

G0 I`

)
∈ Z(m+`)×(m+n+`)

q , cid =

(
c1
c2

)
∈ Zn+`

q , eid =

s0
e1
e2

 ∈ Zm+n+`,
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P1 =

(
B Im

G1 Im

)
∈ Z2m×(2m+n)

q , cd,1 =

(
c3
c4

)
∈ Z2m

q , ed,1 =

s1
e3
e4

 ∈ Z2m+n,

and

cd,2 =

(
c5
c6

)
∈ Z2m

q , ed,2 =

s2
e5
e6

 ∈ Z2m+n,

this requires to provide a non-interactive zero-knowledge proof of knowledge πK of short
vectors idi ∈ {0,1}`, zi,1,di,1,di,2 ∈ Zm, eid ∈ Zm+n+`,ed,1,ed,2 ∈ Z2m+n – where idi is binary
and ‖eid‖∞ ≤ B, ‖ed,1‖∞ ≤ B, ‖ed,2‖∞ ≤ B, ‖zi,1‖∞,‖di,1‖∞,‖di,2‖∞ ≤ β – that satisfy the
relations

P0 · eid +

(
Im

bq/2cI`

)
·
(

0m

idi

)
= cid (9)

P1 · ed,1 +

(
Im

bq/pcIm

)
·
(

0m

di,2

)
= cd,1 (10)

P1 · ed,2 +

(
Im

bq/pcIm

)
·
(

0m

di,2

)
= cd,2 (11)

and

[
dT

i,1 dT
i,2 idi[1]dT

i,2 . . . idi[`]dT
i,2 zT

i,1
]
·



A
A0

A1
...

A`

−D


= uT mod q. (12)

Such a proof of knowledge can be generated by extending the proof system of [35] which
is based on the decomposition-extension framework of Ling et al. [34] we will discuss
in Appendix D.1. As in [35], this proof of knowledge is obtained from Stern’s protocol
[40] by repeating it t ∈ Θ(n) times to make the soundness error negligible. This proof
of knowledge πK is made non-interactive using the Fiat-Shamir heuristic [25] and it is
made of a triple πK = ({CommK, j}t

j=1,ChallK ,{RespK, j}t
j=1), where the challenge ChallK =

H(M,VK,cid,cd,1,cd,2,{CommK, j}t
j=1)

4. Compute a one-time signature sig = S (SK,(cid,cd,1,cd,2,πK)).

Output the signature that consists of

Σ =
(
VK,cid,cd,1,cd,2,πK ,sig

)
. (13)

Verify(Y ,M,Σ): Parse Σ as in (13). Then, return 1 if and only if: (i) V (VK,(cid,cd,1,cd,2,πK),sig) = 1;
(ii) The proof of knowledge πK properly verifies. Otherwise, return 0.

Open(Y ,SOA,M,Σ): Parse SOA as TB ∈ Zm×m and Σ as in (13). Then, do the following.

1. Compute G0 = H0(VK) ∈ Z`×n
q and G1 = H1(VK) ∈ Zm×n

q . Then, using the master secret
key TB ∈ Zm×m of the GPV IBE scheme, compute small-norm matrices Eid ∈ Zm×` and
E1 ∈ Zm×m such that ET

id ·B = G0 mod q and ET
1 ·B = G1 mod q.
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2. Using Eid, decrypt cid to obtain the `-bit string id ∈ {0,1}`. Then, use E1 to decrypt cd,1 (i.e.,
by computing b(c4−ET

1 c3) · (p/q)e) and cd,2 (i.e., by computing b(c5−ET
1 c6) · (p/q)e) and

obtain di,1,di,2 ∈ Zm, respectively.

3. Using the information revealed by steps 1 and 2, compute

vT = dT
i,1 ·A+dT

i,2 ·A0 +
`

∑
j=1

idi[ j] ·dT
i,2 ·A j−uT mod q, (14)

and determine if the obtained vector v∈Zn
q appears in a record transcripti =(v, id, i,upk[i],sigi)

of the database Sttrans for some index i. If so, output the corresponding i (and, optionally,
upk[i]). Otherwise, output ⊥.

The most difficult part of the security proof is the security against mis-identification attacks. Briefly,
we will need to consider two kinds of misidentification attacks. In Type I attacks, the adversary’s fake
signature Σ? is opened for a new identifier id? ∈ {0,1}` that was not used in any output of the Qa-join
oracle. Type II attacks are such that: (i) The opening of Σ? reveals an identity id? for which the Qa-join
oracle returned a membership certificate certi? containing id?, but (ii) The corresponding syndrome v†

that the adversary chose (at step 1 of the joining oracle) at that Qa-join-query is not the value revealed at
step 3 of the opening (14) of the forgery Σ?.

Type I attacks are treated in the same way as in the proofs of [31, 35]. In Type II attacks, we prove
the security under the SIS assumption using a technique suggested by Böhl et al. [10]. In fact, the
membership certificate and the membership secret form a triple (id,d,z) that has the same distribution
as in a variant of Boyen’s signature proposed by Böhl et al. [10], where z plays the role of the signed
message. For this reason, we can prove the security against Type II attacks using the same technique.
Namely, the reduction has to guess in advance which output of the Qa-join oracle would contain an id?

that the adversary recycles in the fake signature (since N is polynomial, the adversary can guess id? with
non-negligible probability). For this identifier id?, the reduction computes the matrices (A,{A j}`j=0)

in such a way that it can compute exactly one pair (d†
i ,z

†
i ) of vectors satisfying (2). When running the

joining protocol at the Qa-join-query involving id?, the reduction B simulates the view of the adversary
(by rewinding the proof of knowledge and computing zi,1 as a function of zi,0, which can be extracted
from the proof of knowledge) in such a way that the membership secret becomes the vector zi prepared
at the beginning. Since the fake signature Σ? opens to a syndrome v? ∈ Zn

q (at step 3 of the opening
algorithm) that differs from the syndrome v† of the crucial Qa-join-query, the corresponding short vector
z?i ∈ Zm must also differ from z†

i . This allows the reduction B to solve an instance of the SIS problem as
in [10, Theorem 6.3].

The security against framing attacks is proved in a very simple manner since the adversary has to
break an instance of an ISIS problem to frame a honest user. In fact, we can prove the security of the
scheme by having the reduction honestly choose vectors zi,0 and sending vT

i,0 = zT
i,0 ·D to the adversary

(which plays the role of the GM). By rewinding the adversary several times using the Improved Forking
Lemma of Brickell et al. [15], we can extract another short vector z?i,0 such that vT

i,0 = z?i,0
T ·D. Since

z?i,0 6= zi,0 with high probability, the reduction obtains a non-trivial short vector w = z?i,0− zi,0 in Λ⊥(D).
Finally, the anonymity property is proved exactly in the same way as in [35] and there is no specific

difficutly to solve here.

5 Conclusion

In a scientific point of view, we still have to improve the exact choice of parameters that will allow the
security proof of our scheme to work while making it more efficient. In the current construction, our
scheme requires a modulus q of exponential size while the static construction of [35] only requires a
modulus q larger than logN.
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In a more personal point of view, this internship was the opportunity to get more familiar with lattice-
based cryptography and advanced (anonymity-related) cryptographic protocols in particular. Designing
such an advanced primitive was the occasion to manipulate objects at different scales and see how they
interact to each other. It taught me not to underestimate the challenges that may be encountered in order to
correctly tune the parameters of a scheme. For example, the constraints to take into account in a security
proof are likely to importantly affect the choice of parameters, even if the scheme seems to work (and
remain secure) for a more efficient choice of parameters.
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A Ling et al.’s static group signature

We based our scheme on the Ling et al. [35] group signature scheme. It is defined as follows.
Let n be the security parameter, and N = Poly (()n) be the maximum expected number of group users.

Then we choose other scheme parameters such that Boyen’s signature scheme (described in C) and the
GPV IBE scheme (described in 3.4) function properly and are secure.

We choose hash functions H1 : {0,1}∗→ Zn×`
q – which goal is to produce ` random syndromes for

multibit GPV – and H2 : {0,1}∗→{1,2,3}t which goal is to provide challenges for the Stern’s protocol,
and select a one time signature scheme ΠOTS = (G ,S ,V ). Let χ denote the b-bounded LWE distribution
over Z.

The group signature is described as follows:

KeyGen(1n,1N): 1. Generate verification key (A,A0, . . . ,A`,u) and signing key TA for Boyen’s signa-
ture scheme. Then for each id = (id1, . . . , id`) ∈ {0,1}`, use TA to generates gsk[id] as Boyen
signature on message id.

2. Generate encrypting and decrypting master keys pair (B,TB) for the GPV-IBE scheme.

3. Output

gpk= ((A,A0, . . . ,A`,u),B); gmsk= TB; gsk= {gsk[id]}id∈{0,1}` .

Sign(gsk[id],M): Given gpk, to sign a message M ∈ {0,1}∗ using the secret key gsk[id] = z, the user
generates a key pair (VK,SK)← G (1n) for ΠOTS, and ther perform the following steps:

1. Encrypt the index id with respect to identity VK using the GPV IBE. Namely we compute:

(c1 = BT s+ e1,c2 = GT s+ e2 + bq/2cid) ∈ Zm
q ×Z`

q

with e1,e2,s sampled from χ with the right dimension.

2. Generate a NIZKPoK Π to show the possession of a valid message-signature pair (id,z) for
Boyen-s signature and that (c1,c2) is a correct GPV IBE encryption of d with respect to identity
VK. This is done as in 4.2. The message is embed in the challenge of the Fiat-Shamir method to
construct NIZK proofs.

3. Compute a one-time signature sig = S (VK;c1,c2,Π)
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4. Output the group signature Σ = (VK,(c1,c2),Π,sig)

Verify(gpk,M,Σ): Parse Σ as before. Check that V (VK;sig,(c1,c2),Π) = 1, otherwise return 0.

Verify that Π is a valid proof, otherwise return 0.

If all verifications pass, return 1.

Open(TB,M,Σ): On input gmsk= TB and a signature Σ = (VK,(c1,c2),Π,sig), this algorithm decrypt
(c1,c2) using GPV IBE decrypt with respect to the identity VK and returns the decrypted identity
id.

The underlying ideas of this scheme are developed in section 4.1, as our scheme is based on this one.

B Laguillaumie et al.’s Group Signature for Static Groups

Before continuing we need in the Laguillaumie et al. [31] protocol the following algorithms to complete
section 3.1.3.

Lemma 4 was extended by Gordon et al. [28] so that the columns of the generated matrix A is
conditioned to lie within a given linear vector space of Zn

q (for q prime):

Lemma 6. There exists a PPT algorithm SuperSamp that takes as inputs matrices B ∈ Zm×n
q and

C ∈ Zn×n
q such that the rows of B span Zn

q, m ≥ n ≥ 1, and q ≥ 2 prime such that m ≥ Ω(n logq). It
outputs A ∈ Zm×n

q and a basis TA of Λ⊥q (A) such that A is within statistical distance 2−Ω(n) to U(Zm×n
q )

conditioned on BT ·A = C, and ‖T̃A‖ ≤ O(
√

mn logq logm).

It is useful to obtain a randomized basis without changing the underlying lattice, which purpose is to
continue working on the same object without knowing on what we are working at, which is important to
guarantee privacy for instance. This is why we may want be able to randomize a basis B to obtain an
independent equivalent basis C, in order to provide the long blue basis from the short red basis in figure 1.

Lemma 7 (Adapted from [18, Le. 3.3]). There exists a PPT algorithm RandBasis that takes as inputs
a basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(

√
logn), and outputs a basis C of L satisfy-

ing ‖C̃‖ ≤
√

nσ with probability ≥ 1−2−Ω(n). Further, the distribution of C is independent of the input
basis B.

In this section we will present the Laguillaumie et al. [31] protocol we used as a basis to build our
protocol.

Keygen(1n,1N): Given a security parameter n > 0 and the desired number of group members N = 2` ∈
Poly (n), choose parameters q, m, p, α and σ as specified in section 4.2 and make them public.
Choose a hash function H : {0,1}∗ → {0,1}t for some t = Θ(n), which will be modeled as a
random oracle in the security proof. Then, proceed as follows.

1. Run TrapGen(1n,1m,q) to get A ∈ Zm×n
q and a short basis TA of Λ⊥q (A).

2. For i = 0 to `, sample Ai ←↩ U(Zm×n
q ) and compute (Bi,S′i) ← SuperSamp(Ai,0). Then,

randomize S′i as Si← RandBasis(S′i,Ω(
√

mn logq logm)).1

3. For j = 0 to N− 1, let id j = id j[1] . . . id j[`] ∈ {0,1}` be the binary representation of id j and
define:

Aid j =

[
A

A0 +∑
`
i=1 id j[i]Ai

]
∈ Z2m×n

q . (15)

Then, run T′id j
← ExtBasis(Aid j ,TA) to get a short delegated basis T′id j

of Λ⊥q (Aid j). Finally, run
Tid j
← RandBasis(T′id j

,Ω(m
√
`n logq logm)).1 The j-th member’s private key is gsk[ j] := Tid j .

1These randomisation steps are not needed for the correctness of the scheme but are important in the traceability proof.
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4. The group manager’s private key is gmsk := {Si}`i=0 and the group public key is defined to be
gpk :=

(
A,{Ai,Bi}`i=0

)
. The algorithm outputs

(
gpk,gmsk,{gsk[ j]}N−1

j=0

)
.

Sign(gpk,gsk[ j],M): To sign a message M ∈ {0,1}∗ using the private key gsk[ j] = Tid j , proceed as
follows.

1. Run GPVSample(Tid j ,σ) to get (xT
1 |xT

2 )
T ∈ Λ⊥q (Aid j) of norm ≤ σ

√
2m.

2. Sample s0←↩U(Zn
q) and encrypt x2 ∈ Zm

q as c0 = B0 · s0 +x2 ∈ Zm
q .

3. Sample s←↩ U(Zn
q). For i = 1 to `, sample ei ←↩ DZm,αq and compute ci = Bi · s+ p · ei +

id j[i] ·x2, which encrypts x2 ∈ Zm
q (resp. 0) if id j[i] = 1 (resp. id j[i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0,c0,
√

2σ/q;s0) ∈ RLWE (see Section 3.1.2).

5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:

(i) ((Bi|B0), p−1(ci− c0),
√

2α;(sT | − sT
0 )

T ) ∈ RLWE (the vectors ci and c0 encrypt the
same x2, so that p−1(ci− c0) is close to the Zq-span of (Bi|B0));

(ii) or (Bi, p−1ci,α;s)∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to the Zq-span
of Bi).

As explained in remark 2, this can be achieved by OR-ing two proofs for RLWE. The resulting
protocol is then made non-interactive using the Fiat-Shamir heuristic.

6. For i = 1 to `, set yi = id j[i]x2 ∈ Zm and generate a NIZKPoK πK of {ei}`i=0,{yi}`i=0,x1 such
that,

xT
1 A+

`

∑
i=0

cT
i Ai =

`

∑
i=1

eT
i
(

pAi
)

and eT
i
(

pAi
)
+yT

i Ai = cT
i Ai for i ∈ [1, `] (16)

with ‖ei‖,‖yi‖,‖x1‖ ≤max(σ ,αq)
√

m for all i.
This is achieved using ProveISIS in order to produce a triple (CommK ,ChallK ,RespK), where
the challenge ChallK = H(M,CommK ,{ci}`i=0,π0,{πOR,i}`i=0).

The signature consists of

Σ =
(
{ci}`i=0,π0,{πOR,i}`i=0,πK

)
. (17)

Verify(gpk,M,Σ): Parse Σ as in (17). Then, return 1 if π0,{πOR,i}`i=0,πK properly verify. Else, return 0.

Open(gpk,gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (17). Compute x2 by decrypting c0 using S0.
For i = 1 to `, use Si to determine which one of the vectors p−1ci and p−1(ci− x2) is close to
the Zq-span of Bi. Set id[i] = 0 in the former case and id[i] = 1 in the latter. Eventually, output
id = id[1] . . . id[`].

C Boyen’s signature scheme

In our protocol described in section 4.2, the certificate is a variant of the Boyen’s signature scheme [13]
that has been first described in [36].

Definition 16 (Signature scheme). A signature scheme is a triple of algorithm (Gen,Sign,Verify) such
that Gen on security parameter n returns a pair of keys (SK,VK); Sign on a message M with the signing
key SK returns a signature σ ; and Verify on a message M a signature σ and the verification key VK
returns 1 meaning that the signature is accepted or 0 otherwise.
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Definition 17 (Boyen’s signature scheme [36, sec 6.2.2]). The Boyen’s signature variant is defined as
follows.

Gen(1n): Generate (A,TA) ∈ Zm×n
q ×Zm×m

q using TrapGen algorithm. For i = 1, . . . , `, sample uniform
matrices Ai←↩ U (Zm×n

q ). And choose a syndrome u←↩ Zn
q.

The public verification key is VK= (A,{Ai}`i=1,u) and the secret signing key it TA

Sign(TA,M): Let AM =

[
A

A0 +∑
`
i=1 MiAi

]
∈ Z2m×n

q where Mi is the i-th bit of the binary decomposition

of M. Output v ∈ Zm sampled from DΛ⊥u (AM),σ using GPVSample(TAM ,σ) obtaining TAM from
ExtBasis(A,A0 +∑

`
i=1 MiAi,TA).

Verify(VK,M,v): Let AM be as above. Accept if ‖v‖ ≤ σ
√
(n) and vT ·AM = u; otherwise reject.

D The Interactive Proof Systems

In this appendix we will present the different proofs system used in our scheme.

D.1 For Boyen’s Signature

First of all, we need to prove that the certification of the syndrome in the Join algorithm went well.
The interactive proof system used in sections 3.4 and 4.2 is a variant of the Stern’s proof system [40]

to prove the knowledge of a valid signature pair (d,z) for the Boyen’s signature, or in a more general
sense to prove the knowledge of an ISIS solution. Its particularity is to require three transcripts to build
back the secret. Then its security is based on a variant of the classical forking lemma [15]. It is described
as follows.

Sn is the set of permutations over 1, . . . ,n, and COM is a statistically hiding commitment scheme.

Commitment: P samples{
rz

(1), . . . ,rz
p←↩ U (Z(2`+2)3m

q ); re
(1), . . . ,re

(p′)←↩ U (Z3k2
q ); rd ←↩ U (Z2`

q )

τ ←↩ S2`; π1, . . . ,πp,ψ1, . . . ,ψp←↩ S3m; φ1, . . . ,φp′ ←↩ S3k2

Then P send the commitment CMT = (c1,c2,c3) to V where


c1 = COM

(
τ; {π j}p

j=1; {ψ j}p
j=1; {φ j}p′

j=1; A∗
(

∑
p
j=1 β jrz

( j)
)
; P∗

(
∑

p′
j=1 b jre

( j)
)
+Qrd

)
c2 = COM

(
{Fπ j,ψ j,τ(rz

( j))}p
j=1; {φ j(re

( j))}p′
j=1; τ(rd)

)
c3 = COM

(
{Fπ j,ψ j,τ(z j + rz

( j))}p
j=1; {φ j(e j + re

( j))}p′
j=1; τ(d∗+ rd)

)
Challenge: V sends a challenge Ch←↩ {1,2,3} to P.

Response: Depending on Ch, P computes the response RSP as follows:

• Case Ch = 1: For each j ∈ 1, . . . , p, let t( j)
z = Fπ j,ψ j,τ(z j) and vz

( j) = Fπ j,ψ j,τ(rz
( j)). For each

j = 1, . . . , p′, let te
( j) = ψ(e j) and ve

( j) = ψ(re
( j)). Let td = τ(d∗) and vd = τ(rd). Then the

prover sends:

RSP =
(
{t( j)

z }p
i=1; {vz

( j)}p
i=1; {te

( j)}p′
i=1; {ve

( j)}p′
i=1; td ; vd

)
. (18)
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• Case Ch = 2: For each j = 1, . . . , p, let wz
( j) = zj + rz

( j). For each j = 1, . . . , p′, let we
( j) =

e j + r( j)
e . Let wd = d∗+ rd . Then the prover sends:

RSP =

(
τ;
{

π j
}p

j=1 ;
{

φ j
}p

j=1 ;
{

ψ j
}p′

j=1 ;
{

w( j)
z

}p

j=1
;
{

w( j)
e

}p′

j=1
;wd

)
. (19)

• Case Ch = 3: For each j = 1, . . . , p, let y( j)
z = r( j)

z . For each j = 1, . . . , p′, let y( j)
e = r( j)

e . Let
yd = rd . Then the prover sends:

RSP =

(
τ;
{

π j
}p

j=1 ;
{

φ j
}p

j=1 ;
{

ψ j
}p′

j=1 ;
{

y( j)
z

}p

j=1
;
{

y( j)
e

}p′

j=1
;yd

)
(20)

Verification: Receiving RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (18), check that t ∈ B2`; t( j)
z ∈ VALID(td),∀ j ∈ 1, . . . , p; t( j)

e ∈
B3k2 ,∀ j ∈ 1, . . . , p′; and that:c2 = COM

(
{v( j)

j }
p
j=1; {v( j)

e }p′
j=1; vd

)
c3 = COM

(
{t( j)

z +vz
( j)}p

j=1; {t( j)
e +v( j)

e }p′
j=1; td +vd

)
.

• Case Ch = 2: Parse RSP as in (19), check that:c1 = COM
(

τ; {π j}p
j=1; {ψ j}p

j=1; {φ j}p′
j=1; A∗

(
∑

p
j=1 β jwz

( j)−u
)
; P∗

(
∑

p′
j=1 b jwe

( j)
)
+Qwd − c

)
c3 = COM

(
{Fπ j,ψ j,τ(wz)}p

j=1; {φ j(we
( j))}p′

j=1; τ(wd)
)

• Case Ch = 3: Parse RSP as in (20), check that:c1 = COM
(

τ; {π j}p
j=1; {ψ j}p

j=1; {φ j}p′
j=1; A∗

(
∑

p
j=1 β jyz

( j)
)
; P∗

(
∑

p′
j=1 b jye

( j)
)
+Qyd

)
c2 = COM

(
{Fπ j,ψ j,τ(yz

( j))}p
j=1; {φ j(ye

( j))}p′
j=1; τ(yd)

)
In each case, V output 1 if and only if all the conditions hold. Otherwise, it outputs 0.

Let us explain the previous protocol. We want to prove the knowledge of a pair (M,v) where v is a
Boyen signature. Namely we want to prove that we know v such that: vT AM = u mod q, with AM defined
as in appendix C, and ‖v‖ ≤ β for some bound β . We can notice that (AM,v) is a valid pair belonging
to the ISIS relation defined in section D.2. Thus we can prove it using the decomposition-extension
framework we will discuss later on.

But this is not enough, we have to prove that AM is also well formed. To do this we rewrite the

problem vT AM = u mod q as z̄T Ā = u mod q with z̄ = (d1||d2||id0d2|| . . . ||id`d2) and Ā =


A
A0
...

A`

 and

we prove the knowledge of a binary vector id satisfying the previous relation. To do this we use the same
extension method as previously, and then prove that id is indeed binary.

D.2 Decomposition-Extension Framework

The idea of the last proof is to exploit algebraic aspects of the ISIS problem. We want to prove the
knowledge of a witness x in the RISIS relation. Namely:

RISIS∞

n,m,q,β
=
{
((A,y),x) ∈ Zm×n

q ×Zn
q×Zm

q : (‖x‖∞ ≤ β )∧ (xT A = y mod q)
}

Stern [40] proposed a protocol to solve the syndrome decoding problem (SPD). It is a problem from
error correcting code theory where the goal is to find a code vector x of given syndrome y and given
hamming weight – namely the number of bits set to 1. We can then informally see it as an ISIS problem
with respect to hamming weight instead of a norm.
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Definition 18 (Syndrome Decoding Problem). Let r,n,w be integers, and let (H,w,s) be a triple consisting
of a parity-check matrix H ∈ Fn×r

2 , an integer w≤ n and a vector s ∈ Fr
2.

Does there exist a vector e ∈ Fn
2 of hamming weight ≤ w such that eT H = s ?

To fit into this setting, we define specific sets of vectors. We set B3m to be the set of vectors in
{−1,0,1}3m such that there are exactly m coordinates of each value. Similarly we define the set B2m to
be the set of vectors in {0,1} such that there are exactly m coordinates of each value. Once the initial
vector belongs to one of those sets, we are allowed to apply the Stern protocol.

A first restriction is that in the Stern initial protocol, the hamming weight of the witness x is prescribed
initially, which is not the case in the ISIS∞ problem. To avoid it, the idea is to extend the vector x with 2m
coordinates in such a way that the resulting vector x′ belongs to B3m defined as above. Then by adding
2m zero-lines to matrix A to produce A′ we have x′T A′ = y mod q ⇐⇒ xT A = y mod q. Which means
that if we can convince someone that x′ is a valid witness for the syndrome decoding problem, we have
that x is a valid witness for the relation RISIS∞

n,m,q,1
. This is the extension method.

Once this can be done, we can extend the protocol to reach any bound β and not just 1. To do this we
use the binary decomposition technique. Namely let x be a vector with coordinates bounded by β . We
decompose coordinate-wise x into k = blgβc+1 vectors ũ0, . . . , ũk−1 such that x = ∑

k−1
j=0 2 j · ũ j. Next

we apply the extension in the previous paragraph to have vectors u j such that:(
k−1

∑
j=0

2 j ·u j

)T

·A′ = y mod q ⇐⇒ xT A = y mod q

We then have a framework to turn k proofs for the syndrome decoding problem into a proof for
RISIS∞

n,m,q,β
. We thus have the requested proof system.

D.3 Gentry-Peikert-Vaikuntanathan IBE

To prove that we know the underlying plaintext under a multibit GPV encryption, we will use the method
described in [35].

Namely we notice that given P =

(
B Im

G Ik

)
∈ Z(m+k)×(m+n+k)

q , c =
(

c1
c2

)
∈ Zn+k

q be a GPV

ciphertext of a given message b and e =

 s
x
x2

 ∈ Zm+n+` be the Gaussian noises used in the GPV

encryption, we have:

P · e+
(

Im

bq/2cIk

)
·
(

0m

b

)
= c

Which is the relation we want to prove. Like (9). The (10), (11) are simply a variant. The witness is
(e,b) and the publicly known parameter is (P,c).

This can be achieved using the decomposition-extension framework we described above, as follows:

– To argue that b ∈ {0,1}k, we extend d to d∗ ∈ B2k, then use a random permutation: if the
permutation is in B2k, that means that the initial vector was in B2k

– To argue that e ∈ Zm+n+`, where ‖e‖∞ ≤ b, we form the vectors e1, . . . ,ep ∈ B3(m+n+`) using the
decomposition-extension method, then use random permutations to show the membership of the
e j’s.

– We then extend the matrices with 0 in order to have the following relations as in Appendix D.1. To
prove the relation we then add random noises to mask the initial vectors.
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