
Privacy-Preserving Cryptography

Fabrice Mouhartem

1 Privacy Preserving Cryptography

Privacy-preserving cryptography is a Ąeld of cryptography that aims at providing methods to
ensure some functionality while preserving the anonymity of the participants. An example
of such method could be anonymous credentials [11, 7]. In this primitive, a user should be
able to authenticate to some service without revealing its identity nor the pattern of the
authentications. It can be used for access control as in proving the right to access some
buildings while keeping individual access schedule private. This system involves one (or more)
credential issuer(s) and a set of users who have their own secret keys and pseudonyms that are
bound to their secret. Users can dynamically obtain credentials from an issuer that only knows
usersŠ pseudonyms ad obliviously sign usersŠ secret key as well as a set of attributes. Later on,
users can make themselves known to veriĄers under a different pseudonym and demonstrate
possession of a certiĄcation from the issuer, without revealing neither their signature nor the
secret key.

More examples exist: some related to anonymous authentication such as group signatures,
ring signatures, blind signatures, or more intricate tasks such as electronic cash or electronic
voting.

Contents

1 Privacy Preserving Cryptography 1

2 Group Signatures 2

2.1 DeĄnition . 2
2.2 Non-Interactive Zero-Knowledge Proofs . 3
2.3 Generic Construction of Group Signatures . 7
2.4 Toward Instantiations of Group Signatures . 10
2.5 Variations of Group Signatures . 12
2.6 Dynamic Group Signatures . 16

3 Electronic-Cash 17

3.1 DeĄnition . 17
3.2 Building Blocks . 19

4 Electronic Voting 21

4.1 Desired Notions . 21
4.2 Designing a Voting System . 23
4.3 Instantiating an E-Voting Scheme: Belenios 24

1

2 Group Signatures

2.1 DeĄnition

In this section we will use the example of group signatures to work on privacy-based primitives.
Group signatures was coined by Chaum and Van Heyst [12] and later formalised by Bellare

Micciancio and Warinschi [2] in the static setting where the group is deĄned once-and-for-all at
the setup phase. This model was later extended for dynamically growing groups concurrently
by Bellare, Shi and Zhang and Kiayias and Yung [3, 19].

A dynamic group signature is a protocol enabling users to sign a message on behalf of a
group it priorly enrolled while remaining anonymous inside this group. Moreover, in case of
conĆicts, an opening authority is able to lift anonymity of problematic signatures using its
own secret information. As an application, we can consider anonymous access control as in
public transportation. Indeed, a public transport company only needs to check whether a user
possesses a valid subscription or not. Thus, when a user subscribes to the public transport
system, it joins the group. Later on, when a user commutes, it signs a challenge, for instance
the timestamp of entry, and the correct veriĄcation of the signature means that it is allowed
to travel. In case of problem, it is then possible to a third party, for instance law enforcement,
to deanonymise signatures to know who was in the public transport at this time.

To begin with, we will consider the case of static groups.

DeĄnition 1 (Group Signatures). A (static) group signature is a tuple of 4 algorithms
(Setup, Sign, Verify, Open) acting as follows:

Setup(1λ, N): this algorithm takes as inputs the security parameter λ and the number of
users N and outputs the group public key gpk, secret keys (gsk[i])N

i=1 and the opening
key ok.

Sign(gsk[i], m): it takes as inputs a user secret key gsk[i], a message m to be signed and
outputs a signature σ.

Verify(gpk, m, σ): given a message m, a signature σ and the group public key gpk, this
algorithm returns true or false.

Open(ok, m, σ): given the opening key ok, a message m and a signature σ, this algorithm
returns an identity i or an error message ⊥.

These algorithms act as their names suggest it. We now need to deĄne the security notions
that are wanted for this constructions. Bellare, Shi and Zhang and Kiayias and Yung [3, 19]
boiled down the security of the scheme to the following properties beside correctness: Ąrstly
the identity of the users is protected by anonymity, which states that without the opening key,
it is impossible to tell who provided a valid signature. Then, there is the traceability, which is
the security of the system against malicious users even if they colludes with the authorities.
In other words, it is impossible to provide a valid signature that cannot be traced back by the
opening algorithm. More formally, theses notions are deĄned as follows.

Correctness. A group signature is said to be correct if for any integer N , any gpk, (gsk[i])N
i=1

obtained from the Setup algorithm, any message m and index i ∈ [1, N], it holds that

Verify(gpk, Sign(gsk[i], m)) = true

2

Experimenttraceability

A C
(gpk, (gsk[i])N

i=1
, ok)← Setup(1λ, N)

gpk,ok

. Repeat qu times: .

i

gsk[i] Store i in Qu

. Repeat qσ times: .

m, i

σ ← Sign(gsk[i], m)

σ Store (m, σ) in Qσ

. .

(m⋆, σ⋆) A wins if (m⋆, σ⋆) /∈ Qσ ∧ Verify(gpk, m⋆, σ⋆) = accept

∧ Open(ok, σ⋆) /∈ Qu

Figure 1: The traceability game

Traceability. A group signature is traceable if no probabilistic polynomial-time (PPT)
algorithm can win the traceability game described in Figure 1 with non-negligible probabilities.
This winning probability is also denoted by advantage.

(Full-)Anonymity. A group signature is fully-anonymous if for all PPT algorithms, the
following advantage with respect to the anonymity game in Figure 2 is negligible where

Advanon(λ) ≜
∣∣∣Pr[d = 1 ♣ Experiment1

anon]− Pr[d = 1 ♣ Experiment0
anon]

∣∣∣.

2.2 Non-Interactive Zero-Knowledge Proofs

Alongside with a formal deĄnition for group signatures, Bellare, Micciancio and Warinschi
proposed a generic construction for group signatures that rely on an existentially unforgeable
signature scheme, a public-key encryption scheme and non-interactive zero-knowledge proofs.

Given an NP-language L = ¶(x, w)♢, a non-interactive zero-knowledge proofs enables
proving statements on (x, w) ∈ L being given x.

3

Experimentb
anon

A C
(gpk, (gsk[i])N

i=1
, ok)← Setup(1λ, N)

gpk

. Repeat qs times: .

m, i

σ σ ← Sign(gsk[i], m)

. Repeat qo times: .

m, σ

i i← Open(ok, m, σ)

. .

i0, i1, m

σ⋆
σ⋆ ← Sign(gsk[ib], m)

d

return d

Figure 2: The anonymity game

DeĄnition 2 (Non-Interactive Zero-Knowledge Proofs). A non-interactive zero-knowledge
(NIZK) proof system on an NP language L is a tuple of algorithms (Setup, Prove, Verify) such
that:

Setup(1λ): Given a security parameter λ, this algorithm returns a common reference string
crs.

Prove(crs, x, w): From an element x and its corresponding witness w, output a proof π.

Verify(crs, x, π): This algorithm inputs an element x and a proof π and outputs either accept

or reject.

The security of NIZK proofs is deĄned using the correctness notion of completeness, the
soundness, which is the security of the veriĄer against dishonest provers who want to provide
a proof π without knowing a witness w, and the zero-knowledgeness, which on the other hand
models the security of the prover which wants no information to be leaked besides the validity
of the statement against (potentially) malicious veriĄers.

4

Completeness. A non-interactive proof system on language L is complete if for any crs←
Setup(1λ), any (x, w) ∈ L it holds that Verify(crs, x, Prove(crs, x, w)) = accept

Soundness. A non-interactive proof system on language L is sound if for any security
parameter λ, any (possibly corrupted or unbounded) prover P̂, for any x /∈ L, the following
probability is negligible in λ:

Pr
[
crs ←֓ U(¶0, 1♢p(λ)); π ← P̂(crs, x); Verify(crs, π, x) = accept

]
.

In the case where P̂ is restricted to be a PPT algorithm, we say that we have an argument of
knowledge.

Zero-Knowledge. A non-interactive proof system on language L is zero-knowledge if for
any security parameter λ, there exists a simulator Sim = (S1, S2) such that S1 outputs a
crs ∈ ¶0, 1♢p(λ) and a state information τcrs on input λ, and S2 outputs a proof π from τcrs and
x. Given (x, w) ∈ L the two following distributions are computationally indistinguishable:

{
(crs, π) ♣ (crs, τcrs)← S1(λ), π ← S2(τcrs, x)

}

and {
(crs, π) ♣ crs ←֓ U(¶0, 1♢p(λ)), π ← Prove(crs, x, w)

}
.

Moreover, for the security proof to hold in the case of the construction of group signatures
we will consider, the following strengthening on NIZK proofs is required:

Simulation Soundness. A NIZK proof system is simulation sound if the soundness is veriĄer
even under the view of simulated proofs.

Remark. Let us notice that without a crs, it is impossible to have NIZK for all NP. Indeed,
let us assume that there exist a NIZK proof system (P, V) for a language L ∈ NP. Then we
will see that it implies L ∈ BPP.

To do this, let us construct a PPT algorithm A that decides if x ∈ ¶0, 1♢⋆ is in L or not.
From the zero-knowledge property, we know that there is a PPT simulator that computes
π ←֓ Sim(1λ, x) such that V (π, x) = 1 with overwhelming probability (as it is distributed as
a real proof). Moreover, from the soundness property, we know that the probability that
V (π, x) = 1 if x /∈ L is negligibly small. Therefore, A can simply run Sim on input x and
check whether the proof is approved by the veriĄer or not, giving a probabilistic algorithm to
decide if x ∈ L.

We can also notice that in the presence of a crs, this proof does not hold, as it implicitly
means that the simulator chooses the crs on the Ćy. However, in the presence of a crs, the
soundness holds with respect to a Ąxed crs that is chosen beforehand (that the cheating prover
cannot change). Hence the necessity either to have a crs or more generally interactions to
have ZK that doesnŠt rely on set-up assumptions.

To construct NIZK arguments, we will use the Fiat-Shamir heuristic. This transformation
uses a Σ-protocol and a hash function modeled as a random oracle.

DeĄnition 3 (Σ-protocol). A Σ-protocol (P, V) over an NP-language L is a 3-round protocol
(a, c, z) between a prover P possessing (x, w) ∈ L and a veriĄer V knowing only x. The
interaction starts with the prover sending a message to the veriĄer. The protocol should verify
the following security properties:

5

• Completeness: if the protocol is followed honestly between a prover and a veriĄer, then
the veriĄer should accept the proof.

• Special soundness: given two accepting different transcripts with the same commitment
a : (a, c, z) and (a, c′, z′), there exists an extractor that efficiently computes w for the x
used in the proof.

• Honest-veriĄer zero-knowledge: there exists a simulator that on inputs x and a random
challenge c, outputs a transcript (a, c, z) with the same distribution as a real interaction.

Using such a protocol, it is possible to generically transform it into a 4-round zero-
knowledge proofs using standard techniques (using a commitment scheme). Henceforth, it is
not uncommon to use Σ-protocol to describe zero-knowledge proofs as its conceptually simpler.
We are however interested in the so-called Fiat-Shamir transform [17].

DeĄnition 4. Given a Σ-protocol (P, V) for a language L and a hash function H modeled as
a random oracle, the Fiat-Shamir transform acts as follows:

1. The prover starts by providing a commitment a sampled honestly.

2. Then, the output of the veriĄer is computed using x and a as c = H(x, a).

3. Finally, the prover is given c and outputs an answer z.

The output of this transform is a proof π = (a, z) that is veriĄed by computing c = H(x, a)
and then check that (a, c, z) is indeed an accepting transcript for the Σ-protocol (P, V).

Informally, this method enforces the challenge to be honestly generated. The zero-knowledge
property is achieved using the simulator for the HVZK of the Σ-protocol using the fact that
H is a random-oracle to argue that (a, c, z) is correctly distributed.

The tricky part is to prove the (computational) soundness, which is possible using the
following lemma:

Lemma 1 (Forking lemma [26]). Let Qi denotes the random oracle queries. For ε
2T

fraction

of (q1, . . . , qi⋆) it holds that P̂ wins in the soundness game with probability ε
2T

conditioned on
Qi⋆ = (x, a) and Qi = qi for all i ≤ i⋆.

Which is admitted in the context of this course. Let us now prove the computational
soundness of the Fiat-Shamir heuristic assuming the special soundness property of the Σ-
protocol.

Proof. Let us assume that there is a PPT adversary P̂ against the soundness game of the
Fiat-Shamir transform that wins with probability ε in time T .

As this adversary is polynomial, there are a polynomial number of queries to the random
oracle that are made: (q1, . . . , qh). As H is modeled as a random oracle, we can then say that
there is one of those queries that is a query on (x, a). Otherwise, it means that the adversary
doesnŠt have any information on H(x, a) and cannot win with with probability greater than
1/♣C♣ (C denotes the challenge space, which is chosen so that 1/♣C♣ is negligible).

Thus, we can construct the following adversary against the soundness of the Σ-protocol: let
us Ąrst run P̂, which will eventually output a winning proof (a⋆, z⋆) such that (a⋆,H(a⋆, x), z⋆)
is a valid transcript for the underlying Σ-protocol. There exists an index i⋆ such that H(a⋆, x)

6

is queried. Let us now rewind P̂ with the same random coins and random oracle answers until
the i⋆-th query, where we sample a new response H(a, x⋆) = c̃ uniformly at random. Then by
the Forking Lemma (Lemma 1), this new run succeeds with probability

(
ε

2T

)2
and it allows us

to obtain a second accepting transcript (a⋆, c̃, z̃) that breaks the special soundness.

2.3 Generic Construction of Group Signatures

In the following, we will describe the generic construction of zero-knowledge proofs proposed
by Bellare, Micciancio and Warinschi [2]. Provided the following building blocks:

• a public-key encryption scheme PKE (its security will be deĄned later);

• an existentially unforgeable under chosen message attack (EU-CMA) signature scheme Sig;

• a simulation-sound NIZK proof Π.

Let us deĄne the following group signature:

Setup(λ, N): Given the security parameter λ and the group size N , this algorithm does the
following:

1. Sample crs ←֓ U(¶0, 1♢p(λ)) for a polynomial p.

2. Generate keys (ek, dk)← PKE.Keygen(1λ).

3. Generate keys (sk, vk)← Sig.Keygen(1λ).

4. For i from 1 to N :

(a) Generate (vki, ski)← Sig.Keygen(1λ).

(b) Compute certi ← Sig.Sign(sk, ⟨vki, i⟩).
(c) Set group secret key for user i as gsk[i]← (i, vki, ski, certi).

5. DeĄne the group public key as gpk = (crs, ek, vk).

6. Set the opening key ok = (dk, vk).

Sign(gsk[i], m): Given a user secret key gsk[i] parsed as (i, vki, ski, certi) and a message m:

1. Compute the signature s← Sig.Sign(ski, m).

2. Compute the ciphertext c← PKE.Enc(ek, ⟨i, vki, certi, s⟩; r) with explicit random-
ness r ←֓ U(¶0, 1♢q(λ)).

3. Generate a proof π for the following statement:

• c is an encryption of ⟨i, vki, certi, s⟩ under randomness r such that:

Ű Sig.Verify(vk, ⟨i, vki⟩, certi) = 1.

Ű Sig.Verify(vki, m, s) = 1.

The corresponding language ¶(⟨ek, vk, m, c⟩, ⟨i, vki, certi, r⟩)♢ is denoted Lgs.

4. Output σ = (c, π)

Verify(gpk, m, σ): To verify a signature σ = (c, π) on message m, this algorithm accepts if
and only if Π.Verify(⟨ek, vk, m, c⟩, π) accepts.

Open(ok, m, σ): To open a signature σ = (c, π) on message m with the opening key ok =
(dk, vk), the opening algorithm does the following if Verify(gpk, m, σ) returns accept:

7

1. Parse PKE.Dec(dk, c) as ⟨i, vki, certi, s⟩.
2. Return the identity i.

The correctness of the above scheme immediately follows from the completeness of the
proof system. Let us now prove the different security properties of this group signature scheme.

Theorem 1. If Sig is an EU-CMA signature scheme, and the NIZK Π is sound, then the
above construction is traceable.

Proof. Let B be an adversary that wins the Experimenttraceability with non negligible probability
with Qu be the set of corrupted users as per Figure 1.

Let us deĄne three types of forgeries:

• Type 0: The forgery (m⋆, (c⋆, π⋆)) is such that ⟨ek, vk, m⋆, c⋆⟩ /∈ Lgs.

• Type I: ⟨vk⋆, i⋆⟩ has not been certiĄed during the setup phase.

• Type II: ⟨vk⋆, i⋆⟩ has been certiĄed but i /∈ Qu and (m⋆, i⋆) has not been queried to the
signing oracle.

If the forgery is of type 0, then π⋆ has to prove a false statement. Otherwise, c⋆ would
encrypt a message of the form ⟨i⋆, vk⋆

i , cert⋆
i , s⟩ where Sig.Verify(vk, ⟨i⋆, vk⋆

i ⟩, cert⋆
i) = 1 and

Sig.Verify(vk⋆
i , m⋆, s⋆) = 1, which means that ⟨ek, vk, m⋆, c⋆⟩ ∈ Lgs which contradicts our

assumption. Therefore, if a Type 0 forgery happens, then it contradicts the soundness of the
NIZK Π. Hence:

Pr[Type 0] ≤ 2−λ.

If the forgery (m⋆, (c⋆, π⋆)) is a valid Type I forgery, then we can use the following adversary
against the EU-CMA security of the signature scheme. The signing operations using sk are
forwarded to the challenger against EU-CMA security. Using the opening key ok to decrypt c⋆,
it is possible to obtain ⟨i⋆, vk⋆, cert⋆, s⋆⟩. Hence, (⟨vk⋆, i⋆⟩, cert⋆) is a valid forgery against the
EU-CMA security of the signature scheme Sig as it has never been signed under sk. Thus it
holds that

Pr[Type I] = Adveu−cma
A1

(λ).

Finally, if the forgery is of Type II, then it is possible to produce the following algorithm
against EU-CMA. First guess the identity i′ ∈ [N] uniformly at random. Then all the keys
gsk[j] are generated honestly for j ̸= i′. Then, upon interacting with B, the reduction does
the following.

• If B requests gsk[i], then abort.

• On oracle queries (j, m) with j ̸= i′, it is possible to compute s = Sign(gsk[j], m)

• On oracle queries (i′, m): call signing oracle on m.

Then, upon receiving the forgery (m⋆, (c⋆, π⋆)), the reduction Ąrst decrypts c⋆ into
⟨i⋆, vk⋆, cert⋆, s⋆⟩ and outputs m⋆, s⋆ as a forgery.

This reduction successes with probability 1/N (the guessing probability), meaning that:

1

N
Pr[Type II] = Adveu−cma

A2
(λ).

8

Hence, to sum up, the advantage of any PPT against the tracing algorithm is bounded by:

Adv
traceability
B

(λ) ≤ 2−λ + Adveu−cma
A1

(n) + N · Adveu−cma
A2

(λ).

Theorem 2. If PKE is an IND-CPA (resp. IND-CCA) secure public-key encryption scheme,
and Π is a simulation-sound ZK proof system, then the above construction is anonymous (resp.
fully-anonymous).

In the following, we will provide the proof for full anonymity.

Proof. Let us assume we have an adversary B against the anon experiment and let us interact
with it in order to break the security of the PKE encryption scheme. Let us Ąrst make
a modiĄcation on the experiment Experiment

anon
. Instead of generating crs uniformly at

random, it is generated by the ZK simulator S1 along with its secret trapdoor τcrs. Then on
step 3 on the signature scheme, this trapdoor τcrs is used to generate simulated proofs π to
answer signature queries. This does not change the view of the adversary by ZK properties,
then the difference with the initial game is negligible.

We then use this modiĄed scheme to construct a reduction to the security of the CCA
game. Let us assume that we are interacting with a challenger for the CCA game, it Ąrst
starts by providing the reduction an encryption key ek. This key is embedded as is in the
group secret key in the setup phase of the group signature, the rest is generated as in our
modiĄed scheme.

Signature queries. Upon receiving signature queries, the reduction uses the secret key
gsk[i] to faithfully answer the request (with the proof generated with trapdoor τcrs.

Opening queries. When the reduction receives an opening query about signature σ = (c, π)
about message m, it sends c to the decryption oracle of the CCA challenger and upon receiving
the answer parsed as ⟨i, vk, cert,s ⟩, it sends back the identity i to the adversary B.

Challenge phase. Then, during the challenge phase, the adversary B sends a challenge
m, i0, i1 to our reduction. The reduction then prepares two messages for b ∈ ¶0, 1♢: Mb =
⟨ib, vkb, certb, Sig.Sign(skib

, m)⟩ and sends M0 and M1 to the CCA adversary as a challenge
query. The reduction then receives a challenge c⋆, for which it computes a simulated proof
π⋆ ← Π.S2(τcrs, ⟨ek, vk, m, c⋆) before sending (c, π⋆) as a challenge signature to the adversary
B. B will then do other computations, and if it asks for a valid opening query for (c⋆, π′), then
the reduction aborts. Otherwise, B will eventually return an answer d to its challenge which
is forwarded ot the CCA adversary.

Analysis. We Ąrst note that the reduction aborts with probability Advsim−sound
A

(λ), as it
means that the adversary broke the soundness under the view of simulated transcripts, and
thus the simulation soundness. Which means that the advantage of our reduction can be
written down as:

Advcca
C (λ) = ♣(Pr[d = 1 ♣ b = 1]− Pr[d = 1 ♣ b = 0]) (1− Pr[abort])♣ ,

meaning that, after taking into consideration our initial change that makes the resulting game
differing from the original one by Advzk

A′(λ):

Advanon
B (λ) =

Advcca
C (λ)

1− Advsim−sound
A

(λ)
+ Advzk

A′(λ).

9

P(h, α) V(h)
ρ ←֓ Zp

R = gρ R

c c ←֓ Zp

s = ρ + c · α s

Accept iff gs = R · hc

Figure 3: Schnorr protocol for discrete logarithm

2.4 Toward Instantiations of Group Signatures

As we saw, the key component of this construction is the proof at step 3 of the signing
algorithm. This is a proof of correct encryption, and knowledge of valid signatures on the
message under this ciphertext. In this section we will address the Ąrst part, and explain why
the second part requires more works.

First of all, let us consider the following encryption scheme, the El Gamal encryption [16].
This encryption scheme, that relies on the decisional Diffie-Hellman assumption, uses as public
parameters pp a cyclic group G of prime order p along with a generator g.

Setup(1λ, pp): The setup algorithm starts by sampling a decryption key dk ≜ α ←֓ Zp and
computes ek ≜ h = gα ∈ G.

Encrypt(ek, m; r): To encrypt a message m ∈ [1, Bm] using encryption key ek = h and a
randomness r ∈ Zp, this algorithm computes the following two parts:

c1 = gm · hr, c2 = gr.

And sends (c1, c2) as the ciphertext.

Decrypt(dk, c): To decrypt a ciphertext of the form c = (c1, c2) using the decryption key
dk = α, this algorithm Ąrst computes:

gm′

= c1 · c−α
2 ,

given that Bm is polynomially large, a discrete-log algorithm (letŠs say giant-step baby-
step or Pollard-ρ) can be used to recover m′ that is thus returned.

Then, we give a proof of correct decryption using a Schnorr-like protocol [28]. Let us
recall that the Schnorr protocol for discrete logarithm is a three-round protocol to prove the
knowledge of an exponent α such that gα is equal to some public value h. The protocol for
discrete log is described in Figure 3. In our case, we use it with the Fiat-Shamir heuristic to
make the proof non-interactive (see DeĄnition 4).

The resulting construction to prove the knowledge of a message m under a ciphertext
(c1, c2) and public key h is described as follows, using a hash function H that is modeled as a
random oracle:

1. First sample randomnesses ρm, ρr from Zp and compute

R1 = gρ
mhρ

r , R2 = gρ
r ,

10

2. Compute c = H(R1, R2, c1, c2, h), then

sr = ρr + c · r, sm = ρm + c ·m.

3. Send (R1, R2, sr, sm) as the proof π.

To verify such a proof π, the veriĄer checks that the following equations hold:

R1 = gsm · hsr c−c
1 , R2 = gsr · c−c

2 , c = H(R1, R2, c1, c2, h).

However we are still missing a key component: zero-knowledge proofs compatible with
signatures. Our tentative construction ends here as there is no construct from standard DDH-
like assumptions. However it is possible to obtain them from pairings for instance [23, 24, 22],
strong-RSA [8], or lattice assumptions [21]. Let us notice that these signature schemes are not
allowed to hash the message as it breaks its structure and makes it unusable for zero-knowledge
proofs. They rely on commitment schemes to be able to be able to compute on hidden data.

Informally, a commitment scheme is the digital equivalent of a safe box: one can commit a
value, and once itŠs inside a safe, it is impossible to modify what is inside the box (binding
property) nor know whatŠs inside (hiding property). More formally, it is deĄned as follows.

DeĄnition 5 (Commitment Scheme). A commitment scheme is a triple of algorithms
(Setup, Commit, Open) such that:

Setup(1λ): This algorithm takes as input a security parameter λ and outputs public parameters
pp.

Commit(pp, m): On inputs public parameters pp and a message m, this algorithm outputs a
commitment com and a decommitment dec

Open(pp, m, com, dec): Given public parameters pp, a message m, a commitment com and a
decommitment dec this algorithm returns accept or reject.

Moreover, a commitment is required to verify the following security properties:

Binding. A commitment scheme is computationally binding if any PPT algorithm A can win
the following game with non-negligible probability:

1. First the challenger runs the Setup algorithm and sends pp to the adversary.

2. The adversary A outputs a commitment com and two openings (m, dec), (m′, dec′) and
wins if

Open(pp, m, com, dec) = accept, Open(pp, m′, com, dec′) = accept and m ̸= m′.

If the adversary is unbounded, the scheme is said to be perfectly binding.

Hiding. A commitment scheme is hiding if the following distributions are indistinguishable
for any m0, m1: ¶com ♣ (com, dec) ← Com(pp, m0)♢ and ¶com ♣ (com, dec) ← Com(pp, m1)♢.
If they are statistically indistinguishable, the scheme is said to be perfectly hiding, and
computationally hiding if they are computationally indistinguishable.

An example of commitment scheme is PedersenŠs commitment [25]:

11

Setup(1λ): Choose a cyclic group G of prime order p > 2λ and g, h ←֓ U(G) and output
pp = (G, g, h).

Commit(pp, m): Sample a random r ←֓ U(Zp) and output com := gm · hr and dec := (m, r).

Open(pp, m, com, dec): Parse dec as (m′, r) and accept if and only if com = gmhr and m = m′.

Security. This scheme is perfectly hiding, as hr is distributed uniformly in G and acts as a
one-time-pad.
For the binding property, it relies on the difficulty of the discrete logarithm problem (DLP).
Given a DLP instance G, g, h, we send it as public parameters to the adversary A against the
Pedersen commitmentŠs binding, which is distributed correctly. The adversary A eventually
outputs two distinct pairs (m, r) and (m′, r′) such that gmhr = gm′

hr′

, which means that
logg(h) = m′−m

r−r′ mod p, is the discrete logarithm we were asked to solve. We moreover notice
that as m ̸= m′ mod p, then r ̸= r′ mod p, hence the inverse of r − r′ exists in Zp.

2.5 Variations of Group Signatures

Since their introduction, group signatures have been extended through different manners in
order to extend either their functionality or the anonymity guarantees. We already hinted it via
dynamically group signatures, to allow users to interactively enroll into the group at any point
of time (without altering the group public key). Here, we will start with a simpler example of
such extensions with group signatures with message dependent opening (GS-MDO) [27].

Recalling the public transportation example, we noticed that the opening authority
possesses a lot of power, and if it is corrupted, then the anonymity property is meaningless.
This Ćavour introduces a new authority: the admitter which issues tokens on speciĄc messages.
These tokens are necessary to lift anonymity on these messages. Hence, the accountability is
ensured by the collaboration of the opening authority and the admitter, while neither of them
can reveal the identity of a signer alone. In this context, in case of an incident, the admitter
can issue a token for the timestamps related to the incident.

DeĄnition 6 (GS-MDO). A group signature with message-dependent opening is a tuple of 5
algorithms (Setup, Sign, Verify, Trapgen, Open) acting as follows:

Setup(1λ, N): this algorithm takes as inputs the security parameter λ and the number of
users N and outputs the group public key gpk, secret keys (gsk[i])N

i=1 and the opening
key ok and the admitter secret key mksadm.

Sign(gsk[i], m): it takes as inputs a user secret key gsk[i], a message m to be signed and
outputs a signature σ.

Verify(gpk, m, σ): given a message m, a signature σ and the group public key gpk, this
algorithm returns true or false.

Trapgen(mskadm, m): with the admitter secret key mskadm and a message, this algorithm
outputs a token τm.

Open(ok, m, τmσ): given a message m, a token τm, a signature σ and the group public key
gpk, this algorithm returns true or false.

12

In the security requirements, the notion of anonymity is separated in two different notion:
the anonymity against the admitter and the anonymity against the opening authority. These
notions are described in the security games where only one of the two secret keys is given to
the adversary according to their name. The traceability remains unchanged (adapting the
opening queries to integrate Trapgen).

A natural way to construct them is using two different layers of encryption around the
identity in the signature algorithm: the outer one for the admitter and the inner one for the
opening authority. This is summarised in Figure 4. However, we notice that by doing that, it
still not depend on the message. To do this, we use an identity-based encryption (IBE) scheme.
An IBE scheme is an encryption scheme, with an extra authority that possesses a master
secret-key that is used to derive secret keys for users under some identity id (for instance an
e-mail address).

DeĄnition 7. An IBE scheme is a tuple of algorithms (Setup, Keygen, Enc, Dec) such that:

Setup(1λ): from the security parameter λ, this algorithm outputs public parameters pp and a
master secret key msk.

Keygen(msk, id): given the master secret key msk and an identity string id, this algorithm
outputs the user secret key skid.

Enc(pp, id, M): using the public parameters pp, an identity id and a message M , this algorithm
provides a ciphertext C.

Dec(skid, C): the ciphertext C is decrypted using skid by this algorithm that outputs a
message M .

While its correctness is straightforward, an IBE have many different possible security
requirements. The security can be active or passive with respect of the decryption oracle,
similarly to a PKE. However, the adversary have also access to a key derivation oracle, which
can be either selective (the corrupted identities are known at the outset of the security game),
or adaptive, where the queries are made adaptively. While the former security requirement is
unrealistic, it leads to more efficient constructions which are sufficient to be used as a building
block.

To encrypt a message, one only needs to know the identity of the receiver (and the public
parameters), while decrypting requires the secret key associated to the identity under which
the message has been encrypted. Initially introduced to avoid public-key infrastructures,
identity-based encryption is a very versatile building block in cryptography, which can be used
to design signatures or encryption keys.

To design an GS-MDO scheme, we use an IBE as the outer encryption, and the signer
encrypts its identity with an IBE, where the identity of the IBE scheme is the message to be
signed. Hence, the secret-key for this message can be issued by the admitter (which possesses
the master secret key for the IBE scheme).

Identity-Based Encryption. An example of IBE scheme based on pairings is the Boneh-
Franklin IBE [5] that relies on pairings.

DeĄnition 8. Let G, GT two cyclic groups of prime order p > 2λ and g a generator of G. A
(symmetric) pairing is a map e : G×G→ GT that veriĄes:

• Bilinearity: for any a, b ∈ Zp, it holds that e(ga, gb) = e(g, g)ab;

13

ID

ADM OA

tM ok

tM

tM + ok

Figure 4: Two-layer encryption of the identity for GS-MDO.

• Non-degeneracy: e(ga, gb) = 1 =⇒ a = 0 ∨ b = 0;

• Efficiently computable.

The security of the Boneh-Franklin IBE relies on the following security assumption, which
is akin to DDH in the GT .

DeĄnition 9. The decision bilinear Diffie-Hellman (DBDH) problem is given a pairing
e : G×G→ GT and a generator g of G, given (g, ga, gb, gc, T), decide if T = e(g, g)abc or if
T ∈R GT .

The DBDH assumption is that no PPT algorithm can solve the DBDH problem with
non-negligible advantage.

Setup(1λ): from the security parameter λ, pick a bilinear map e : G×G→ GT of prime order
p ≥ 2λ and a generator g ←֓ G. Pick a hash function H : ¶0, 1♢⋆ → G and Ąnally pick a
random α ←֓ Zp. The master secret key msk is deĄned as α and the public parameters
are pp := ¶e, (G, GT), g, h = gα, H♢.

Keygen(msk, id): the secret key for user id is computed as H(id)α.

Enc(pp, id, M): to encrypt a message for identity id, pick a random r ←֓ Zp and output

(c1, c2) := (gr, M · e(h, H(id))r).

Dec(skid, C): to decrypt a ciphertext (c1, c2) given H(id)α), output c2 ·H(c1, H(id)α)−1.

Theorem 3. The Boneh-Franklin IBE is IND-ID-CPA secure in the random oracle model
under the decision bilinear Diffie-Hellman assumption.

Proof. Let A be an adversary against the Boneh-Franklin IBE that wins the IND-ID-CPA
game with non-negligible advantage ε.

Let us build a reduction B that wins the DBDH game with non-negligible probability.
At Ąrst, the reduction receives a DBDH challenge (g, ga, gb, gc, T) and has to devise either
T = e(g, g)a,b,c or is a random element in GT . To do this, the reduction B sends to A the
public parameters pp := (e, (G, GT), g, h := ga, H) (implicitly setting α = a). Then B interacts
with A as follows.

Hash queries. When A queries the value H(x), it is answered as follows:

• Either x have been queried before and it returns the same value H(x).

14

• Otherwise, B sample a bit bx such that bx = 1 with probability 1/q + 1 where q is (an
upper bound on) the number of private-key queries, and a random value βx ←֓ Zp.

Ű If bx = 0, deĄne H(x) = gβx .

Ű If bx = 1, deĄne H(x) = (gb)βx .

In both cases, store (x, bx, βx) in a list Qh initially empty.

Private-key queries. When A queries private-key skid for identity id, we Ąrst assume
w.l.o.g. that a hash query is made before asking the private-key query. Hence B can recover
the entry (id, bid, βid) from Qh.

• If bid = 1, abort and outputs a random bit d.

• If bid = 0, B can compute H(id)α = (gα)βid .

Challenge query. At some point A issues a challenge query (M0, M1, id⋆) where id⋆ has not
been queried before as a private-key query. We assume w.l.o.g. that H(id⋆) has been queried
before as B can make the query itself otherwise. Therefore, B can recover (id⋆, bid⋆ , βid⋆) from
Qh.

• If bid⋆ = 0, abort and output a random bit d.

• Otherwise, B picks a random bit γ and set the challenge ciphertext as:

c⋆ = (gc, Mγ · T βid⋆)

We note that in either case, c⋆ is distributed uniformly at random in G×GT from the point
of view of A, which is the distribution of an encryption.

Output. Eventually, A outputs a bit γ′. If γ = γ′, then B outputs 1 (meaning that
T = e(g, g)abc), otherwise it outputs 0 (meaning that T ∈R GT).

Analysis. Firstly, let us evaluate the probability that B doesnŠt abort, which is:

Pr[¬abort] = Pr[bid⋆ = 1] · Pr


q∧

i=1

bxidi
= 0

]

=
1

q + 1
·


1− 1

q + 1

q

≈ 1

e1 · (q + 1)
,

for large enough q.

15

Now,

Pr[B = 1 ♣ T = e(g, g)abc] =
Pr[B = 1 ∧ T = e(g, g)abc ∧ ¬abort]

Pr[T = e(g, g)abc]
· Pr[¬abort ∧ T = e(g, g)abc]

Pr[¬abort ∧ T = e(g, g)abc]

+
Pr[B = 1 ∧ T = e(g, g)abc ∧ abort]

Pr[T = e(g, g)abc]
· Pr[abort ∧ T = e(g, g)abc]

Pr[abort ∧ T = e(g, g)abc]

= Pr[B = 1 ♣ T = e(g, g)abc ∧ ¬abort] · Pr[¬abort ∧ T = e(g, g)abc]

+ Pr[B = 1 ♣ T = e(g, g)abc ∧ abort] · Pr[abort ∧ T = e(g, g)abc]

= Pr[B = 1 ♣ T = e(g, g)abc ∧ ¬abort] · Pr[¬abort ∧ T = e(g, g)abc]

+
1

2
· Pr[abort]

=
1

2
+ Pr[¬abort] ·


Pr[B = 1 ♣ T = e(g, g)abc ∧ ¬abort]− 1

2


.

Similarily,

Pr[B = 1 ♣ T ∈R GT] =
1

2
+ Pr[¬abort]


Pr[B = 1 ♣ T ∈R GT ∧ ¬abort]− 1

2


=

1

2

Thus, putting everything together gives us the probability that the reduction wins as:

Advdbdh
B λ =

∣∣∣Pr[B = 1 ♣ T = e(g, g)abc]− Pr[B = 1 ♣ T ∈R GT]
∣∣∣

= ε Pr[¬abort]

=
ε

e1(q + 1)
.

The modiĄcations with the previous construction are as follows:

• In the key generation algorithm, a key pair (msk, mpk) are generated for an IBE scheme
and the mpk is included in the group public key, while the master secret key is the
admitter secret key.

• During the signature phase, the identity of the user is Ąrst signed under the opening
authority key, then this encryption is encrypted using the IBE under the identity m.

• Finally, the Trapgen algorithm outputs the IBEŠs secret key for the message m as the
token.

2.6 Dynamic Group Signatures

To Ąnish this part about group signatures, we will present dynamic group signatures in this
section (that has already been hinted previously). Two equivalent models have been proposed
by Kiayias and Yung [20] and Bellare, Shi and Zhang [3].

DeĄnition 10 (Group Signatures). A dynamic group signature is a tuple of algorithms or
protocols (Setup, Join, Sign, Verify, Open) acting as follows:

16

Setup(1λ, N): this algorithm takes as inputs the security parameter λ and an upper bound on
the number of users N and outputs the group public key gpk, the group master secret
key msk and the opening key ok.

Join: this interactive protocol is run between an enrolling user knowing its identity and the
group manager possessing the group master secret key. At the end of the interactions,
the user obtains its secret key gskid and the transcript of the interaction is publicly
available.

Sign(gskid, m): it takes as inputs a user secret key gskid, a message m to be signed and outputs
a signature σ.

Verify(gpk, m, σ): given a message m, a signature σ and the group public key gpk, this
algorithm returns true or false.

Open(ok, m, σ): given a message m, a signature σ and the group public key gpk, this algorithm
returns true or false.

In the security deĄnitions, another security requirements is necessary: non-frameability.
Which summarized the fact that either knowing the group secret key, no one is able to frame
an honest user by forging a signature that opens to it.

3 Electronic-Cash

Introduced by Chaum in 1982, e-cash initially aims at providing the digital equivalent of real-
world currencies with a focus on usersŠ privacy. The bank issues coins that can be withdrawn
by users and spent to merchants. Eventually, the money is latter deposit to accounts within the
bank. Between the moment a coin is withdrawn and deposited again, it should be impossible
to identify how it has been spent, contrary to other electronic payment systems.

Since its inception, many variants have been proposed, featuring different properties, such
as divisible e-cash, that allows splitting a coin (while standard e-cash possesses the same
drawback as traditional coin: that is, the merchant has to possess the coins to provide exact
change), decentralised versions and so on.

3.1 DeĄnition

In this e-cash scenario, there are three players: the user, the bank and the merchant.

DeĄnition 11 (Compact e-cash [6]). An e-cash system is a tuple of algorithms or protocols
(BKeygen, UKeygen, Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership)
such that:

BKeygen(1λ, params): it is the key generation algorithm for the bank B. It takes as input the
security parameter λ, and some common parameters params. This algorithm outputs a
key pair (pkB, skB).

UKeygen(1λ, params): it is the key generation algorithm for the user U that outputs (pkU , skU).
Since merchants are a subset of users, they may use the same algorithm as well to obtain
their keys.

17

Withdraw(U(pkB, skU , n),B(pkU , skB, n)): this protocol between the bank B and the user U
allows the latter to withdraw a wallet W of n coins from the bank B. At the end of the
interaction, the user outputs a wallet W or an error message ⊥ while the bank outputs
some message TW that allows it to trace the user should this user double-spend some
coin or an error message ⊥. The bank maintains a database D for this trace information,
to which it enters the record (pkU , TW).

Spend(U(W, pkM),M(skM, pkB, n)): in this protocol, a user U gives one coin of its wallet W
to the merchant M. Here, the merchant obtains a serial number S of the coin and a
proof π of validity of the coin. The userŠs output is an updated wallet W ′.

Deposit(M(skM, S, π, pkB),B(skM, skB)): in this protocol, a merchant M deposits a coin
(S, π) into its account held by the bank B. Whenever an honest M obtained (S, π) by
running the Spend protocol with any (honest or otherwise) user, there is a guarantee
that this coin will be accepted by the bank B. Hereafter, B adds (S, π) to the list of
spent coins. The merchant returns either nothing or an error message ⊥.

Identify(params, S, π1, π2): given two proof of validity π1, π2 for a serial number S, this
algorithm outputs a public key pkU and a proof ΠG. If the merchant M who submitted
the two proofs is not malicious, then ΠG is a proof that pkU is the registered public key
of the user that double-spent the coin S.

VerifyGuilt(params, S, pkU , ΠG): this algorithm allows to publicly verify proof ΠG that the
user with public key pkU is guilty of double-spending coin S.

Trace(params, S, pkU , ΠG, D, n): given a public key pkU of a double-spender, a proof ΠG of
his guilt in double-spending coin S, the database D, and a wallet size n, computes the
serial number S1, . . . , Sm of all the coins issued to U along with proofs Π1, . . . , Πm of
pkU Šs ownership. If VerifyGuilt(params, S, pkU , ΠG) doesnŠt accept, this algorithm does
nothing.

VerifyOwnership(params, S, Π, pkU , n): this algorithm allows to publicly verify the proof Π
that a coin with serial number S belongs to a double-spender with public-key pkU .

This scheme should also verify the following security properties, that are initially provided
informally.

Correctness. If an honest user runs Withdraw with an honest bank, then neither will output
an error message. If an honest user runs Spend with an honest merchant, then the merchant
accepts the coin.

Balance. From the bankŠs point of view, what matters is that no collection of users
and merchants can ever spend more coins than they withdrew. It is required that there is
a knowledge extractor E that executes u Withdraw protocols with an adversarial user and
extracts un serial numbers S1, . . . , Sun. It is asked that for every adversary, the probability that
an honest bank will accept (S, π) as the result of the Deposit protocol, where S ̸= Si∀i ∈ [1; un]
is negligible. If S1, . . . , Sn is a set of serial numbers output by E when running Withdraw with
public key pkU, we say that coins S1, . . . , Sn belong to U identiĄed by pkU .

Identification of Double-Spenders. Suppose B is honest,M1,M2 are honest merchants
who ran the Spend protocol with the adversary such thatM1 outputs (S, π1) andM2 outputs

18

S, π2). This property guarantees that, with high probability, Identify(params, S, π1, π2) outputs
a key pkU and proof ΠG such that VerifyGuilt(params, S, pkU , ΠG) accepts.

Tracing of Double-Spenders. Given a user U is shown guilty of double-spending coin S by
a proof ΠG s.t. VerifyGuilt accepts, this property ensures that Trace(params, S, pkU , ΠG, D, n)
will output the serial numbers S1, . . . , Sn of all coins that belongs to U with proofs of ownership
Π1, . . . , Πn such that for all i, with high probability, VerifyOwnership(params, Si, Πi, pkU , n)
also accepts.

Anonymity of Users. From a privacy point of view, what matters is that the bank,
even when cooperating with any collection of malicious users and merchants, cannot learn
anything about a userŠs spending other than what is available from side information from
the environment. To capture this property more formally, we introduce a simulator S, that
possesses some side information not normally available to players. For instance, in the common
parameters model, S generates these parameters; in the ROM, S controls the random oracle,
etc. We require that S can create simulated coins without access to any wallet, such that a
simulated coin is indistinguishable from a valid one. More precisely, S executes the userŠs side
of the Spend protocol without access to the userŠs secret or public key, or his wallet W .

Exculpability. Suppose that an adversary that participates any number of times in the
Withdraw protocol with the honest user with public key pkU , and subsequently to that, in any
number of legal Spend protocols with the same user. I.e., if the user withdrew u wallet of
n coins each, then this user can participate in at most un Spend protocols. The adversary
then outputs a coin serial number S and a purported proof Π that the user with public key
pkU is a double-spender and owns coins S. The weak exculpability property requires that,
for all adversary, the probability VerifyOwnership(params, S, pkU , Π, n) accepts is negligible.
Furthermore, the adversary may continue to engage in the user U in Spend protocols even if it
means U must double-spend some coins of its choosing (in which case, the state of its wallet is
reset). The adversary then outputs (S, Π). The strong exculpability property postulates that,
for all adversaries, when S is a coin serial number not belonging to U , the weak exculpability
holds, and when S is a coin serial number not double-spent by user U with public key pkU ,
the probability that VerifyGuilt(params, S, Π, pkU , n) accepts is negligible.

3.2 Building Blocks

Some constructions for e-cash relies on blind signatures. However, we describe a construction
using a primitive similar to what is needed for group signatures: signatures with efficient
protocols à la Camenisch and Lysyanskaya [10].

DeĄnition 12. A signature with efficient protocols is a signature scheme (Keygen, Sign, Verify)
along with two companion protocols:

• One protocol to prove the knowledge of a signature;

• One protocol to obtain a signature on a committed value.

As this primitive enables a simple anonymous authentication mechanism, it has proven to
be a fundamental building block for privacy-preserving cryptography. The construction of
signatures with efficient protocols proposed by Camenisch and Lysyanskaya [9] relies on the
Strong RSA assumption:

19

Input: N, a, b, c, and the commitment parameters Nc, gc, hc for c.
The user knows rc such that c = gxhrc mod N .

User(x, rc) Signer(p, q)

Compute cx = axbr mod N cx

Prove that cx and c

commit to the same value

Prove the knowledge of x, r

Sample r′, e at random and compute

r′, e, v v = (cx · br′ · c)1/e

s← r + r′

Output σ = (s, e, v)

Figure 5: Protocol to sign on a committed value

DeĄnition 13 (Strong RSA). The strong RSA problem is the following: given a RSA modulus
N = pq, and u ∈ Z

⋆
N , Ąnd a pair (e, x) such that u = xe mod N .

The strong RSA assumption states that no PPT adversary can solve the RSA problem
with more than negligible probability.

Keygen(1λ): sample a special RSA-modulus: N = p · q with p and q be safe primes. Sample
quadratic residues modulo N : a, b, c ←֓ QRN . Finally, deĄne pk = (N, a, b, c) and sk = p.

Sign(sk, m): to sign a message from a space made of strings of length ℓ, Ąrst pick a random
bitstring e of length ℓ + 2 and s of length ℓ + ♣p♣+ λ and using p compute v such that

ve = ambsc mod N. (1)

The signature σ consists of the tuple (s, e, v).

Verify(pk, σ, m): to verify a signature σ parsed as (s, e, v), one has to check if equation (1)
holds.

Claim. The above signature scheme is EU-CMA-secure under the strong-RSA assumption.

Now that we have a signature scheme, we have to describe the so-called companion-
protocols. To do this, we Ąrst need to describe the associated commitment scheme, which will
be akin to PedersenŠs commitment.

Setup(1λ): generate a special RSA modulus N = p · q and sample h ←֓ QRN and pick a
random g in ⟨h⟩ (the group generated by h).

Commit(x; r): to commit to a value x using the randomness r, output com = gxhr mod N
and dec = (x, r).message

Open(com, dec): to open a commitment com, accept if an only if com = gxhr mod N .

This commitment is statistically hiding and is computationally binding under the factorisa-
tion assumption. Thus, to sign on a committed value, the user and the signer act as described
in Figure 5 and the protocol to prove knowledge on a committed value is sketched in Figure 6.

20

Input: (N, a, b, c), (g, h), (nc, gc, hc), cx = gx · hr
c

User(x, r, σ = (s, e, v)) VeriĄer

Sample randomnesses

w, re, rw, rw, r

Compute

cs ← gshrs ce ← gehre

cv ← gvhrv cw ← gwhrw

z ← ew cz = gzhrz
cs, ce, cv, cw, cz

Prove relations between commitments Accepts if the proofs are correct

Figure 6: Proof of Knowledge of a Signature

...

Ballot Box

x1

x2

x3

xn

Voter 1

Voter 2

Voter 3

Voter n

b1

b2

b3

bn

Registrar

Cred1

Cred2

Cred3

Credn

T ρ

Registration Voting Balloting Tallying

Figure 7: Conduct of an election.

4 Electronic Voting

In this section, we will see yet another complex cryptographic primitive: electronic voting. As
its name implies, the goal of electronic voting is to enable a set of user to cast a vote while
keeping everything but the result secret. Thus, this protocol is intimately tied to privacy-based
cryptography and has been studied since 1985 [14, 4]. Here, we are interested in the case
where the vote is made from a computer and is secured over some public channel, such as the
internet. We are not considering the case of voting machine where the result is tallied on site.

As anyone can act as they want over the protocol, it should be robust against double-voting
attacks, or trying to eavesdrop the result before the tally. As such, the security of the system
should protect the usersŠ anonymity, but also the systemŠs soundness to ensure the reliability
of the vote.

4.1 Desired Notions

As depicted in Figure 7, a voting system follows a sequence of phases. First, the voters that
belongs to the election list receive their credentials from a registrar during the registration
phase. Once this is done, a voter casts its vote xi as its ballot during the voting phase. The

21

entity responsible of the balloting ensures that public information about the bulletin board
remains unlinkable from the ballots. At some point, the vote closes, and the ballots are tallied
to obtain the result of the vote ρ(x1, . . . , xn). In a majority vote, a vote is typically a binary
vector of Hamming weight at most 1 and the result function is the sum of these vectors. The
candidate who obtains the highest number of votes usually wins the election. Each voter wants
their vote to remain unlinkable from them (otherwise, they may be subject to coercion), but
they may also want to be able to checks that their vote has indeed been taken into account.

Henceforth, many security notions are desirable for an e-voting scheme and we can cite
the following properties:

Democracy: this notion captures the fact that every voter should have the same inĆuence
on the resulting vote. Meaning that: only eligible voters are allowed to cast a vote, and
at most one vote per user should be counted.

Privacy: this notion captures the anonymity of the users under public ballots. Hence, no one
can tell what lies inside a ballot.

Coercion-resistance: we also want to ensure that no one can be bribed to enforce his/her
vote. Thus, a voter shouldnŠt be able to prove whom it voted for.

Accuracy: the vote count should be exact.

VeriĄability: this notion may have multiple variant, but it says that it should be possible to
check if a vote is part of the Ąnal tally or not. It can be public, representative (only
allowed members of the system can check the validity of a vote) or universal (anyone
can check that any vote has been casted).

Robustness: the system should be able to resist against a group of malicious voters who
wants to corrupt the result of the vote.

Fairness: to ensure the fairness of the vote, we also want that no partial result can be
computed before the end of the vote.

Flexibility: a property that does not exist in physical voting is that we may also want the
users to be able to change the content of their vote before the end of the vote, so that
they can correct a mistake.

These notions, are not all compatible with each others. For example, a system cannot be
both individually veriĄable and resistant to coercion, as the veriĄcation of your own vote is a
proof of what you voted for.

As such, the description of a voting system will depend on the security it should ensure.
For instance the Belenios voting system [15], which is individually veriĄable, involves the
following entities:

Election administrator: this entity E is responsible for setting up an election. It publishes
the identities id of eligible voters, the list of candidates and the result function ρ of the
election.

Registrar: this entity R is responsible for distributing secret credentials to voters and
registering the corresponding public credentials.

22

Trustee: this entity T is in charge of tallying and publishing the Ąnal result.

Voters: the eligible voters, denoted by their id id1, . . . , idn, who participate in the election.

Bulletin board manager: denoted by B, this entity is responsible for processing ballots
and storing the valid ballots in the bulletin board BB.

These entities participate in the vote via different algorithms. The voting protocol is
deĄned by the set of admissible vote V, the result space R and the result function family
¶ρn : Vn → R♢n∈N. In the case of a majority vote, V is the set of binary vectors (indexed
by the candidates) with at most one 1 and the result space is an integer vector, the result
function is just the vector sum function over casted votes. With these parameters, the voting
system consists of the following algorithms:

Setup(1λ): from the security parameter λ, this algorithm outputs an election key pair (pk, sk)
and a list of credentials L. The public key pk is implicit in all the following algorithms.

Credential(1λ, id): from the security parameter λ and some user identity id, this algorithm
generates the userŠs credential (pkid, skid) and adds pkid to the list of credentials L.

Vote(id, pkid, skid, v): each user can cast a vote using its credentials and its vote v ∈ V. It
outputs a ballot b.

Validate(b): on input a ballot b, this algorithm returns ⊤ for well-formed ballot or ⊥ otherwise.

Box(BB, b): from the bulletin board BB and a ballot b, this algorithm outputs an updated
bulletin board BB′. This algorithm may be stateful (meaning that it maintains a local
state st). In any cases, BB remains unchanged if Validate(b) = ⊥. We say that BB is
well-formed if Validate(b) = 1 for every b ∈ BB.

VerifyVote(BB, id, pkid, skid, b): this algorithm returns ⊥ or ⊤ from the bulletin board BB, the
voterŠs credentials, and a ballot b.

Tally(BB, sk): from the bulletin board BB and the election secret key sk, this algorithm outputs
the tally r and a proof of correct tabulation Π. It is possible that Π is equal to ⊥ which
corresponds to an invalid election.

Verify(BB, r, Π): from the bulletin board BB, the result r and the proof of correct tabulation
Π, this algorithm returns ⊥ or ⊤.

4.2 Designing a Voting System

Several methods have been proposed to design an e-voting system that rely on different
building blocks.

From homomorphic encryption, it is possible to obtain universal veriĄability but the
votes are not Ćexible. Using blind signatures to ensure the anonymity of the votes allows
self-veriĄcation. Finally, a last solution uses mix networks that are deĄned below.

DeĄnition 14 (Mix Network [13]). A mix-network (or mix-net) with respect to a public key
encryption PKE is a function Mix such that Mix(C1, . . . , Cn) = (C ′

σ(1), . . . , C ′
σ(n)) where σ is a

random permutation and PKE.Decsk(C ′
σ(i)) = PKE.Decsk(Cσ(i)) for any i ∈ [1, n].

When this function is associated with a zero-knowledge proof that allows to prove a correct
shuffling of the encrypted inputs, the mix-network is said to be veriĄable.

23

Mix #1 Mix #2 Mix #t Dec. . .
...

...
...

...
...

bn

b3

b2

b1

xσ(n)

xσ(3)

xσ(2)

xσ(1)

Voting Balloting Tallying

Figure 8: Mix-network-based voting system.

Mix-net-based solutions allow both Ćexibility and universal-veriĄability, however fairness is
an issue. However these schemes are quite heavy in terms of communication and computation
costs. To design a voting scheme from mix-networks, the ballots (which are encrypted votes)
are put into a series of mix-nets and the resulting vector (along with the proof of correct
shuffling). Thus the tallying is just the decryption of the resulting vector along with a proof
of correct decryption, and the result function is applied to the resulting results. The use of
mix-networks ensure that voter cannot be linked back to voters and zero-knowledge proofs
ensure veriĄability and robustness of the scheme. We can also see that modifying a vote at
the input of the mix-nets layers is possible with this scheme.

Homomorphic encryptions allows to simply encrypt the vote and aggregates them in the
bulletin board (with a proof of correct evaluation) to make impossible to Ąnd back a vote from
the (publicly available) bulletin board. Then, to tally the vote, one simply has to decrypt the
bulletin board.

Finally, for blind signature-based e-voting systems, the vote procedure is an interactive
protocol with the election administrator. The voter blindly signs its vote to obtain a signature
σi and sends its ballot b = PKE.Enc(pk, ⟨xi, σi⟩) to the trustee. In the original scheme from
Fujioka, Okamoto and Ohta [18], the fairness is ensured by splitting the trustee in two entities:
an opener and a counter. In this case, the voter sends an encryption of a commitment its vote
to the opener and the decommitment of its vote to the counter. Therefore, the counter cannot
count the votes without the opener Ąrst opening them, and the opener canŠt do anything from
the commitment of the votes (from the hiding property). The blind signature ensures both
anonymity and along with the binding of the commitment the robustness of the system.

We can remark that in any of those schemes, it is possible to split the different authorities
to avoid a single point of failure using secure multiparty computation (MPC). It is what
Belenios is doing for instance.

4.3 Instantiating an E-Voting Scheme: Belenios

Belenios [15] is a e-voting scheme that derives from Helios [1]. It works using the homomorphism
of the additive variant of El Gamal encryption and the Schnorr signature scheme from discrete
logarithm (which is the Fiat-Shamir instanciation of the Schnorr identiĄcation protocol we
saw previously). The zero-knowledge proof that is used is a Schnorr-like proof.

24

Setup(1λ): this algorithm generates the public parameters and a key pair for El Gamal
encryption. Namely, it picks G = ⟨g⟩ a cyclic group of order p > 2λ, and sets sk ←֓ Zp

and h = gsk. It also samples two hash functions H, G : ¶0, 1♢⋆ → Zp, initialises a
credentials list L as ∅ and deĄnes the public key as pk ≜ (G, p, h, L, G, H,V = ¶0, 1♢).

Credential(1λ, id): It generates a signing key for the voter who asks for it (pkid, skid) ←
Sig.Keygen(1λ) and appends pkid to L.

Vote(id, pkid, skid, v): To cast its vote using its credentials, a user generates its ballot b as
follows:

1. it encrypts its vote v as c = (c1, c2) ← PKE.Enc(pk, gv; r) and computes an OR-
proof π using g, pk, c1, c2, r that v encrypts either 0 or 1 (using the hash function
H).

2. it computes σ ← Sig.Sign(pkid, (c, π)) and deĄnes the ballot as b = (pkid, c, π, σ).

Validate(b): to validate a ballot, the proof π is veriĄed as well as the signature σ with respect
to pkid. If either of those check fails it outputs ⊥ otherwise it returns ⊤.

Box(BB, b): this algorithm maintains a local state st that stores entries of the form (id, pkid).
If Validate(b) = ⊤, and the voter id never casted a vote before, it updates BB← BB∪¶b♢
and updates st accordingly. If (id, pkid) already appears in its recorded state, it updates
the corresponding entry in BB. In any other cases, it means that the casted vote is
invalid and BB remains the same.

VerifyVote(BB, id, pkid, skid, b): to verify a vote, this algorithm merely checks that b ∈ BB.

Tally(BB, sk): when itŠs time to tally, this algorithm performs the following steps:

1. For each b ∈ BB, run Validate(b). If any of these veriĄcations return ⊥, return ⊥
and Π = ⊥.

2. Parse any ballot b as (pkb, c, π, σ).

3. If pkb appears twice in BB or pkb /∈ L, it outputs ⊥ and Π = ⊥.

4. Compute the result ciphertext cΣ = (cΣ
1 , cΣ

2) = (
∏

b∈BB cb
1,

∏
b∈BB cb

2) where cb is
(cb

1, cb
2).

5. Decrypt cΣ to obtains gρ and runs a generic discrete log algorithm (for instance
baby-step-giant-step) to retrieve the result ρ in time O(

√
n) where n is the number

of legitimate voters.

6. Finally, Π is the proof that cΣ encrypts gρ (using the hash function G), and outputs
(ρ, Π).

Verify(BB, r, Π): to check the validity of a tally, this algorithm runs the veriĄcations steps 1-3
of the Tally algorithm, then recompute the result ciphertext cΣ as in step 4 of the tally
algorithm and checks the proof Π that cΣ is indeed an encryption of gρ.

This voting scheme is proven secure in the random oracle model with weak veriĄability
(meaning that it enjoys universal and individual veriĄability under honest bulletin board and
registration authorities). However, a generic transform exist to make it secure if one of these
two is malicious (but not both).

25

P(xb) V(y0, y1)
Sample ab ←֓ Commit

Sample a random challenge c1−b ←֓ U(Chall)

(a1−b, z1−b)← Sim(y1−b) a0, a1 c ←֓ U(Chall)

cb ← c⊕ c1−b
c

zb ← Σ.P(xb, yb, ab, cb) c0, c1, z0, z1 Verify that c = c0 ⊕ c1∧

Σ.V(y0, a0, c0, z0)∧
Σ.V(y1, a1, c1, z1)

Figure 9: Description of an OR-proof

OR proofs. Given two NP-statements (x0, y0) and (x1, y1) and a Σ−protocol Σ to prove the
knowledge of a witness x for a word y in the language. Let us design a Σ-protocol such that
the prover shows that it knows either x0 or x1. The description of the construction is given in
Figure 9.

References

[1] B. Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
volume 17, pages 335Ű348, 2008.

[2] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal
deĄnitions, simpliĄed requirements, and a construction based on general assumptions. In
Eurocrypt, volume 3376 of LNCS, pages 614Ű629. Springer, 2003.

[3] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In CT-RSA, volume 2656 of LNCS, pages 136Ű153. Springer, 2005.

[4] J. C. Benaloh and M. Yung. Distributing the power of a government to enhance the
privacy of voters. In Proceedings of the Ąfth annual ACM symposium on Principles of
distributed computing, pages 52Ű62, 1986.

[5] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In J. Kilian,
editor, Crypto, pages 213Ű229. Springer, 2001.

[6] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Eurocrypt,
number 3494 in LNCS, pages 302Ű321. Springer, 2005.

[7] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Eurocrypt, number 2045 in LNCS,
pages 93Ű118. Springer, 2001.

[8] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In SCN,
number 2576 in LNCS, pages 268Ű289. Springer, 2002.

[9] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Security
and Cryptography for Networks (SCNŠ02), number 2576 in LNCS, pages 268Ű289, 2002.

26

[10] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In SCN,
LNCS, pages 268Ű289. Springer, 2004.

[11] D. Chaum. Security without IdentiĄcation: Transactions System to Make Big Brother
Obsolete. 28(10):1030Ű1044, 1985.

[12] D. Chaum and E. van Heyst. Group signatures. In Eurocrypt, volume 547 of LNCS, pages
257Ű265. Springer, Springer, 1991.

[13] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84Ű90, feb 1981.

[14] J. D. Cohen and M. J. Fischer. A robust and veriĄable cryptographically secure election
scheme. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 372Ű382. IEEE Computer Society, 1985.

[15] V. Cortier, D. Galindo, S. Glondu, and M. Izabachene. Election veriĄability for helios
under weaker trust assumptions. In European Symposium on Research in Computer
Security, pages 327Ű344. Springer, 2014.

[16] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469Ű472, 1985.

[17] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identiĄcation and
signature problems. In A. M. Odlyzko, editor, Crypto, pages 186Ű194. Springer, 1986.

[18] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In International Workshop on the Theory and Application of Cryptographic
Techniques, pages 244Ű251. Springer, 1992.

[19] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Eurocrypt,
number 3494 in LNCS, pages 198Ű214. Springer, 2005.

[20] A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and separable
authorities. 1(1):24Ű45, 2006.

[21] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with
efficient protocols and dynamic group signatures from lattice assumptions. In Asiacrypt,
2016.

[22] B. Libert, F. Mouhartem, T. Peters, and M. Yung. Practical "signatures with efficient
protocols" from simple assumptions. In AsiaCCS, pages 511Ű522. ACM, 2016.

[23] B. Libert, T. Peters, M. Joye, and M. Yung. Linearly Homomorphic Structure-Preserving
Signatures and Their Applications. In Crypto, LNCS, pages 289Ű307. Springer, 2013.

[24] B. Libert, T. Peters, and M. Yung. Short group signatures via structure-preserving
signatures: Standard model security from simple assumptions. In Crypto, volume 9216 of
LNCS, pages 296Ű316. Springer, 2015.

[25] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure VeriĄable Secret
Sharing. In Crypto, pages 129Ű140. Springer, 1991.

27

[26] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, 13(3):361Ű396, June 2000.

[27] Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group signatures
with message-dependent opening. In PairingŠ12, volume 7708 of LNCS, pages 270Ű294.
Springer, 2012.

[28] C. P. Schnorr. Efficient identiĄcation and signatures for smart cards. In Crypto, volume
435 of LNCS, pages 239Ű252, 1989.

28

	Privacy Preserving Cryptography
	Group Signatures
	Definition
	Non-Interactive Zero-Knowledge Proofs
	Generic Construction of Group Signatures
	Toward Instantiations of Group Signatures
	Variations of Group Signatures
	Dynamic Group Signatures

	Electronic-Cash
	Definition
	Building Blocks

	Electronic Voting
	Desired Notions
	Designing a Voting System
	Instantiating an E-Voting Scheme: Belenios

