
On the implementation of the new quasi-polynomial
discrete logarithm solving algorithms

Fabrice Mouhartem† — Supervisor: Fréderik Vercauteren‡

†ÉNS de Lyon, France
‡Katholieke Universiteit Leuven, Belgium

August 29, 2014

Abstract

In this Master 1 internship report we analyse quasi-polynomial algorithms to solve the
discrete logarithm problem in small characteristic. We will focus on the difficulties one
encounters in the implementation of these algorithms and give some advices to make their
use possible for practical implementation.

Keywords: Cryptology, Discrete Logarithm Problem, Implementation, Quasi-polynomial algorithms.

Contents

1 Introduction 2

2 The different FFS algorithms 2
2.1 Overview of the function field sieve . 3
2.2 The BGJT algorithm . 4
2.3 The GKZ degree 2d descent . 6

3 Improvements and analysis of the parameter ranges 7
3.1 Mathematical background . 7
3.2 The BGJT algorithm . 7
3.3 The GKZ algorithm . 10

4 Results 12

5 Conclusion 13

A A word about Galois fields 16

1

1 Introduction

In cryptology, the main idea is to use the intractability of a problem to prove the security of a
scheme. For example the Diffie-Hellman key exchange [10] bases its security on the compu-
tational Diffie-Hellman (CDH) problem which is to compute gab given (g,ga,gb) in a group
G. This problem is weaker than the discrete logarithm problem (DLP) which is the problem of
computing x given (g,gx) in an group G, because one can compute the discrete logarithm of
ga which is a and then exponentiate gb to get gab and then solve CDH.

The DLP, as well as the factorisation problem, plays an important role in public key cryp-
tography and the hardness of this problem is used as an assumption in many protocols like
key exchange [10] or signature scheme [11]. A general purpose algorithm [4, 9, 14, 5, 20, 26]
has been developed with complexity L(1/3) where LN(α) = exp

(
O
(
(logN)α(log logN)1−α

))
which is subexponential in terms of N the finite field size (LN(1) denotes a function exponen-
tial in logN and LN(0) a polynomial function in logN the size of N).

Recently, some theoretical breakthroughs have been made, focused on small and medium
characteristic finite fields [6, 17], resulting with quasi polynomial algorithms in those cases.
These new algorithms are improvements over the function field sieve (FFS) algorithm [5] and
are based on a special representation of the field called sparse medium subfield representation
which we will define and explain later. The impact of these algorithms is a complete break of
the type 1 pairings over elliptic or hyperelliptic curves [12].

However, far too little attention has been paid to practical implementation of these algo-
rithms. Therefore we don’t have a full understanding of the implication of those new tech-
niques in real-world cryptography. The practical implementation of an algorithm gives us
more information about its efficiency and a better understanding on how it works. In this
report we will examine and explain some of the practical issues one will encounter during
the implementation of these algorithms, and the influence of the parameter ranges onto these
algorithms.

The implementation has been made with Magma computer algebra system [7]. The moti-
vation of this choice is that it has many built-in function that allow us to implement the algo-
rithm easily and the algorithms used are quite well-chosen, for instance the discrete logarithm
in small characteristic is computed using the Coppersmith algorithm [9] which was the fastest
algorithm for the DLP in small characteristic in 2001 according to Menezes, Van Oorschot, and
Vanstone [22]. This allows us to compare the performances of the existing implementations
with the state of the art results.

The rest of the report will be organized as follows: we will first define our notations and
explain the FFS algorithm and the two new quasi-polynomial algorithms then an analysis of
the parameter ranges will be performed. Then the results we get from our experiments will be
shown. Finally we will conclude.

2 The different FFS algorithms

In this section we will focus on explaining the state of the art algorithms to solve the DLP, in
particular the Barbulescu, Gaudry, Joux, and Thomé algorithm [6] and the Granger, Kleinjung,
and Zumbrägel algorithm [17] respectively named BGJT and GKZ algorithms after the name
of their authors.

The first subsection will present the FFS algorithm and introduce the notations that will be
used, then the BGJT will be explained and finally the ideas developed in the GKZ algorithm

2

R = Fqδ [X, Y]

R1 = Fqδ [X, Y]/(f1) R2 = Fqδ [X, Y]/(f2)

R12 = Fqδ [X, Y]/(f1, f2)

Fqδn

Q1 = Fqδ [Z1] Q2 = Fqδ [Z2]

π

Figure 2: Setup for the FFS

will be described.

2.1 Overview of the function field sieve

In the following we denote by p the characteristic of the field Fpl the finite field in which the
DLP will be solved.

Let δ > 1, and let n > 1 such that the DLP can be embedded into Fqδn , i.e. pl|qδn. We
will represent elements in Fqδn as polynomials in R = Fqδ [X, Y]. In order to obtain a finite
field Fqδn , we extend the field twice using the polynomials f1 and f2 and embed the resulting
field R12 in Fqδn through the surjective ring homomorphism π as shown in the commutative
diagram in figure 2.

The main idea of the algorithm is to generate multiplicative relations between elements in
Fqδn , in order to relate the logarithm of an element P in R in terms of “easier” elements. For
instance considering the elements of Fqδn as elements inQ1 = Fqδ [Z1] lead us to take for “easy”
elements the low degree polynomials in Q1, and our goal is then to relate the logarithm of a
degree d polynomial in Z1 into degree d ′ < d polynomials in Z1. This step is called the descent
phase. The easy polynomials are called the factor basis, the logarithm of which is computed in a
first phase. These are the two main phases of the function field sieve.

To illustrate this, let assume that we have the logarithm of linear polynomials in a given
finite field F, obtained from the factor basis solving phase. Let P be an univariate polynomial
of degree 4 viewed as an element in F that can be expressed as follows: P = (X2+aX+b)α(X+

c)β(X+d)γ as the result of one descent step, and (X2 +aX+b) = (X+ e)δ(X+ f)ε as the result
of another descent step. From this two descents we can express P = [(X + e)δ(X + f)ε]α(X +

c)β(X+d)γ, which means that logP = α[δ log(X+e)+ε log(X+f)]+β log(X+c)+γ log(X+d).
As all the {log(X+ a)}a are known, we can then compute the logarithm of P.

In the classical FFS [5], the relations are generated by factoring P in R1 and in R2 and then
map this decomposition into R12 ≡ Fqδn . This leads to a heuristic running time of L(1/3).

In the recent variation of the algorithm, we take f1 = Y − Xq, which gives a linear relation
between X and Y.

As a consequence of the above, a relation like P(X) =
∏
Pαii (Y) can be interpreted as a

relation between P(X) and P̄i(X) where P̄i is the polynomial Pi with its coefficients raised to
the power qδ−1 using the linearity of the map X 7→ X1/q. We will keep this notation in the

3

P0

P1
P2

P3

Level 0

Level 1

(a) Classical descent tree example

degP0 (1)

max(degP1, degP2, degP3) (3)

(b) Adj. et al descent tree representation

Figure 3

following.
The other change is to take f2 to be of degree 1 inX or Y. This means that f2 = h1(Y)X−h0(Y)

or f2 = h1(X)Y − h0(X) respectively. Then a polynomial in R1 ≡ Fqδ [X] can be expressed as a
polynomial of low degree in 1

h1
and X or Y. Using Joux’s special-q method, we end up with an

heuristic running time of L(1/4 + o(1)) [19].

Remark 1. The choice of f2 to be linear in X is common in the implementation of such algo-
rithms, because extension degree of (f1, f2) is then at most qmax(degh0, 1+degh1) [16] when
the choice of f2 to be linear in Y leave us with a degree at most q + degh1 for the extension.
However we will use both, because using f2 to be linear in Y allows us to represent all our
polynomial in X, which is more convenient for our calculus (otherwise we have to use the map
X 7→ Xq on the polynomials to express them in term of the right variable).

Definition 1 (Sparse medium representation). A field admitting a representation as an exten-
sion of Fqδ through f1 = Y − Xq and f2|h1(X)Y − h0(X) (respectively f2|h1(Y)X − h0(Y)) with
bounded degree for h0 and h1 (usually degh0, degh1 6 2) is said to have a sparse medium
representation.

Remark 2. The sparse matrix representation is less restrictive than the definition we gave above.
But it involves some problems called “traps” [8, 17] because of the use of relations living in
h1(X)Y − h0(X) (respectively h1(Y)X − h0(Y)) expressed modulo f2. We will explain these
problems later when we meet then.

A final remark is that the descent phase is an important one, and one can evaluate the
efficiency of a descent method by counting the number of nodes the descent tree has. For
instance the polynomial we obtain from the relation P0 = P1P2P3 will be the one displayed in
figure 3a. In their paper, Adj et al. use another representation [1, 2] to synthesize the drawing of
the tree, as depicted in figure 3b. As the important information is the degree of the polynomial
and the number of nodes at one level, it is what the representation gives us.

2.2 The BGJT algorithm

In this subsection we take f1 = Y − Xq and f2 = h1(X)Y − h0(X) which allow us to represent
elements of Fqδn as polynomials in Fqδ [X].

The main idea of the algorithm is to create relations between polynomials of degree 6 ddegP
2 e

and the polynomials {P − a}a∈F
qδ

where P is the polynomial we want to descend. Once
we have enough relations between the {P − a}a∈F

qδ
, we can use linear algebra to rewrite

logP = log(P − 0) in terms of the degree 6 ddegP
2 e polynomials, then we recurse in those lower

degree polynomials. The older algorithm does not achieve a descent from degree d to dd2 e

4

polynomials, this in the main improvement of the BGJT QPA algorithm which allow the break-
through of becoming a quasi polynomial algorithm.

In order to make this possible we use the so-called “systematic equation” to generate the
relation:

Xq − X =
∏
α∈Fq

(X− α) (1)

To make the translates of X appears in the equation (1), we do the following transformation:

Hm : X 7→ aP+b
cP+d withm =

a b

c d

 and then multiply the relation by (cP + d)q+1 gives us:

(aP + b)q(cP + d) − (aP + b)(cP + b)q = (cP + d)
∏
α∈Fq

(aP + b− α(cP + d)) (2)

Considering the couple (α,β) ∈ Fq×Fq to represent the elements in the right hand side of
the previous equation as β(aP+b)−α(cP+d) makes us notice that we can assimilate (cP+d)

to (1, 0), and the elements under the product are assimilated to (α, 1). The set of such couples
is known to be a representative set of the projective line P1(Fq) and the point (1, 0) is named the
point at infinity.

From (2) we end up with the following equality for everym =

a b

c d

 ∈ Pq by substitute

α by (α,β) ∈ P1(Fq) as described above:

(aP + b)q(cP + d) − (aP + b)(cP + d)q =

∈F
qδ︷︸︸︷
λ

∏
(α,β)∈P1(Fq)

P − x(m−1 · (α,β)) (3)

Where x(m−1 · (α,β)) denotes P − u when m−1 · (α,β) = (u, 1), or 1 if it m−1 · (α,β) = ∞, in
this case the coefficient in front of P vanishes and the remaining term is put into the λ. x can
be viewed as the extraction of the first coordinate of a point of the projective line.

We can notice that the action ofHm becomes trivial whenm ∈ Fq: in this case we are just re-
ordering the elements in the right hand side of (2) and, as aq = a in Fq, the left hand side of (2)
are all equal. This is why we can restrict the set of matricesm to Pq = PGL(Fqδ)/PGL(Fq).

We finally rewrite the left hand side of (3) in term of low degree polynomials:

1

h
degP
1

[(
ãP̃

(
h0

h1

)
h

degP
1 + b̃h

degP
1

)
(cP + d) − (aP + b)

(
c̃P̃

(
h0

h1

)
h

degP
1 + d̃h

degP
1

)]
= λ

∏
(α,β)∈P1(Fq)

P − x(m−1 · (α,β)) (4)

Where ẽ = eq and P̃ is the polynomial P with its coefficients raised to the power q.
In the case where the left-hand side of the equation (4) is ddegP

2 e-smooth, we have a relation
as wanted. Once we have qδ+1 such independent relations, we can express the logP as a linear
combination of degree 6 ddegP

2 e.
A final remark is that the degree 1 elimination step of most of the state-of-the-art art DLP

solving algorithms are using the Joux’s method [19]. The BGJT algorithm has been derived
from this technique for higher degree polynomials. To do this, we take the relations in (4) and
use X as the polynomial P.

5

2.3 The GKZ degree 2d descent

In this subsection we take f1 = Y−Xq and f2 = h1(Y)X−h0(Y). Then we keep the polynomials
in X and Y to represent Fqδn .

This algorithm is based on an observation made in [13] where Göloğlu et al. described a
method to generate a family of polynomials that always completely splits like Xq − X. They
are derived from a polynomial relation, namely the image of Fqδ/Fq2 under the map:

u 7→

(
u− uq

2
)q+1

(u− uq)q
2+1

(5)

This relation describes a set B ⊆ Fqδ of elements B such that Xq+1 − BX + B splits completely,
which can be transformed into Xq+1 + aXq + bX+ c after scaling and translating:

B =
(b− aq)q+1

(c− ab)q
(6)

Given an irreducible polynomial P we want to descend, we build the following lattice:

LP =
{
(w0,w1) ∈ Fqδ [Y] | w0h0 +w1h1 ≡ 0 mod P

}
(7)

If P does not divide w0h0 + w1h1 which is mostly the case, then we have a basis of the form
(u0, Y + u1), (v0 + Y, v1) with ui, vi ∈ Fqδ . To compute this base, we start from the following
base:

(1, (−h0/h1) mod P), ((−h1/h0) mod P, 1)

As P is of degree 2, we then have a base of the form (1,aY + b), (cY + d, 1), which is indeed
(1/a, Y + b/a), (Y + d/c, 1/c), and we have our base.

Remark 3. If a = 0, this means that b = h0/h1 mod P then ∃k, bh1 −h0 = kP. This is a relation
between two degree 2 polynomials, then P divides (−h0 + bh1)/k = (−X+ b)/k = P, which is
a relation between P and a linear polynomial.

Then we want to build a polynomial Q ∈ LP such that Q splits completely. To do this, we
study the necessary condition for Q to be of the form

XY + aY + bX+ c =
1
h1

((Y + b)h0 + (aY + c)h1)

and splits completely: we need that (Y + b,aY + c) ∈ LP in order to have P dividing Q. This
leads to the following relations: b = au0 + v0 and c = au1 + v1. This means that b and c
are fully determined by the choice of a and we only have one unknown left. Substitute the
value of b and c by their expression it term of a in the condition (6) gives us a as the root of a
polynomial relation:

(aq + au0 + v0)
q+1 − B(−u0a

2 + (−v0 + u1)a+ v1)
q = 0 (8)

As h1(Y)Q(Y) = (Y +a)h0(Y) + (bY + c)h1(Y) is at most of degree 3 (under the assumption
that h0 and h1 are at most of degree 2) and having P of degree 2 dividing it, we end up with
a polynomial of degree at most 1, which means a linear one. Then we indeed have a relation
between a degree 2 polynomial and degree 1 polynomials.

6

Hence from this descent from degree 2 to 1, we can extrapolate the method for irreducible
degree 2d polynomial to degree d polynomials by embedding the degree 2d polynomial in
Fqδd where it splits into irreducible quadratics, which can be related with degree 1 polynomials
in Fqδd , and then we can recurse by embedding those new polynomial into F

q
δd2

. The details

about how to do these embeddings will be shown is section 3.3.
The overall cost of the algorithm is then qlog2 q+O(1) [17] which is asymptotically more than

the BGJT algorithm, but the descent tree has less nodes — a step generates O (q) new nodes
instead of O

(
q2
)

— and there is no linear algebra step, one only has to find the roots of the
polynomial (8) in Fqδd , hence this step is quasi instant which make it suitable for practical
implementation.

Remark 4 (A word about the equivalence between this polynomials and the systematic equa-
tion). One can wonder if we can mix both the systematic equation and the sieving technique
we saw in this section. But the splitting polynomials we can obtain are the same.
The GKZ polynomials are the polynomials where Xq − BX + B which can be translate into
Xq+1 + aXq + bX+ c. The BGJT systematic relations are derived from:

(aX+b)q(cX+d)− (aX+b)(cX+d)q = (ãc−ac̃)Xq+1 +(ãd−bc̃)Xq+(b̃c−ad̃)X+ b̃d−bd̃

Which can easily be mapped to Xq+1 + aXq + bX+ c after a division by ãc− ac̃.

3 Improvements and analysis of the parameter ranges

In this section we will present an analysis of the different parameter ranges based on the differ-
ent problems we encountered during the practical implementation of the previous algorithms
which will be explained in this section.

The first subsection will present some mathematical tools we used for this analysis, then
an analysis of the BGJT algorithm will be made and finally an analysis of the GKZ descent will
be presented.

3.1 Mathematical background

As we saw, the BGJT algorithms relies on the probability that the left hand side of (4) splits into
degree ddegP

2 e polynomial. To compute this probability we used the following results: for any
prime power q and any integers 1 6 m 6 n we denote by Nq(m,n) the number of m-smooth
monic polynomials of degree n. The exact formula we used in our analysis is given in [15, 2]
and an approximation for asymptotic behaviour is given in [23]:

Nq(n,m) = qnρ
(n
m

)(
1 + O

(
logn
m

))
(9)

Here ρ denotes the Dickman’s function defined as the unique continuous function such that
∀u ∈ [0, 1] , ρ(u) = 1 and ∀u > 1,uρ ′(u) = ρ(u− 1).

If you are unfamiliar with Galois fields, I invite you to refer to appendix A.

3.2 The BGJT algorithm

In the original article, Barbulescu et al. chose 2 as the value of δ, the motivation of this choice
is to make the field Fqδn as big as possible with a reasonable size for the field Fqδ .

7

Remark 5. The choice of the polynomial f2 to be linear in X or Y will not change the factorisation
probability as we can easily go from one representation to another through the transformations
X 7→ Yq

δ−1
or Y 7→ Xq which are both linear over Fqδ [X, Y].

Let D = degP and ∆ = max(degh0, degh1). Then we need to have a degree (∆ + 1)D
polynomial to be dD2 e-smooth. The smoothness condition which is a necessary condition to have
enough relation is then:

Nqδ((∆+ 1)D, dD2 e)
qδ·(∆+1)D︸ ︷︷ ︸

smoothness probability

#Pq︷ ︸︸ ︷
q3δ−3 � qδ︸︷︷︸

#relations

(10)

We can also randomize the algorithm by taking as substitution P 7→ aP+bP1
cP+dP1

with P1 chosen
uniformly at random such that degP1 < degP instead of Hm as described in section 2.2, this
allows us to take parameters where the smoothness probability has the same order of magni-
tude as qδ. This idea was originally proposed by Barbulescu et al.. They suggest the use of
polynomial P1 subject to a structure in order to be suitable for a sieving technique [6, Section
6.2].

As said before, it is common to select (∆, δ) = (2, 2) as parameters. Substituting this
into (10) leads us to q > 216 Hence the matrix we will have to handle will be 232 × 232 with
248 non zero elements. As suggested by Adj et al. we can use the block Wiedemann algorithm
for the linear factor descent step. This will already have a complexity of 280AN where AN de-
notes the cost of an addition in our medium sized field, hence the security of 80 bits is already
reached. Therefore this algorithm cannot be used in this case.

A way to generate enough relations is to notice that

#Pq = Card(PGL(Fqδ)/PGL(Fq)) = O
(
q3δ−3)

Hence taking δ = 3 instead of δ = 2 makes the condition (10) become
N
q3(3D,dD2 e)
q3·3D q6 � q3,

and the first possible q is then 38 < 26. Then the matrices are of size (26·3)2 = 236 with 224 non
zero entries. And linear algebra is then possible even with cubic operations in the size of the
matrix, we still have 254AN operations, which is less than 280. And with a field of size 26 we
can reach a field of size 23·6·2·26

= 22304 which has the same order of magnitude of the finite
fields currently used for discrete logarithms.

Another way to improve this algorithm by working on the condition (10) is to notice that
the coefficient 3 = ∆ + 1 in front of D can be lowered to 2 by taking h0 and h1 of degree at
most 1. AsNqδ(·, ·) behaves like the Dickman function, this modification allow us to make the
size of the intermediate field dropping down by a factor ≈ ρ(4)

ρ(6) ≈ 250. The trade-off is that
we hence need an intermediate field twice as big to reach the same field size, but the previous
field size was way too big, it is already an improvement.

We can also notice that representatives of Pq are of two forms:

a b

1 d

 and

1 b

0 d

. The

matrices of the form

1 b

0 d

 gives for (4) where P 7→ X:

(h0 + b̃h1)d− (X+ b)d̃ = λ
∏

(α,β)∈P1(Fq)

P − x(m−1 · (α,β) (11)

8

δ ∆ qmin qδmin

2 2 216 232

2 1 28 216

3 1 23 29

3 2 26 218

(a) First possible values of q for some parameters

δ ∆ q maximal descent total tree size

2 1 28 D
2 216·4

2 2 216 D
2 232·5

2 1 216 D
3 232·4

3 1 26 D
3 218·4

(b) Some parameters quality analysis

Table 1

Figure 4: Minimum δ to descend from a degree D polynomial to a degree 1 polynomial in
F16δ [X]

0

8

16

24

32

40

48

56

5 10 15 20 25 30 35 40 45 50

δ
m

in

D

When ∆ = 1, this lead directly to a relation. And we have q
2δ−qδ

q2−q
such matrices. Then having

δ > 2 suffices to generate enough relation for the linear descent phase without smoothness

test. However, the condition (10) then become
N
qδ

(2D,dD2 e)
qδ·3D

q2δ−2 � qδ. Then we must have
δ > 3 to have the hope of having enough relations raised from those matrices.

Another strategy is instead of filtering the relations by the condition “is the degree of the
left hand side of (4) less than dD2 e”, we can just keep the qδ independent relations of lowest
degree. This allow us to descend until the smoothness condition for going from a degree D
polynomial to a degreeD−1 does not hold, which is approximatively 1− 1

ρ−1(q3−2δ)
. And then

using other descent strategy for the low degree polynomials such as Gröbner basis. In combi-
nation with other descent methods, it is how Adj et al. were doing their security analysis [1].

The parameter ranges analysis is summarized in table 1. The table 1a presents some first
value of q to make aD→ dD2 e descent possible, and the table 1b shows the number of nodes in
the descent tree we can expect from some parameters choice, using the “keep the best” strategy
as presented in the previous paragraph.

9

To analyze the efficiency of this algorithm, another way could be to look at the extreme
cases. In this case it can be the minimum δ we can take to make the descent in one step, we
already know from our previous results that it will not be computable due to the linear algebra
step which is costly in terms of time and memory, but it is a good way to look at the behaviour
of the algorithm. Then we can see from figure 4 that δ grows linearly in D, as δ is in the
exponent of q defining the size of our problem, this means that the one-step descent will be
exponential in the size of the field (because the size of the field defines the maximal polynomial
degree we will encounter), and then the behaviour of polynomial smoothness does not play in
our favor.

At last but not least, we can speed up the factor basis elimination by considering the fol-
lowing relation for a ∈ Fqδ :

(X+ a)q = Xq + aq =
h0

h1
+ ã (12)

In the case ∆ = 1, this leads to a relation with at most 3 non zero entry per line instead of q+ 1
with the BGJT variant matrix. In fact the iteration of this ends with the relation (X − a)q

δn
=

(X − a) which is trivial and does not give us more information. There are at most q
δ−1
δn trivial

relations, which means that we need qδ−1
δn relation of the BGJT type. As in the optimal case

n ≈ q, we that there are O
(
qδ−1

)
missing relations. In the factor basis matrix there are then

O
(
qδ
)

rows with O (1) elements and O
(
qδ−1

)
rows with O (q) relations, which leads to an

overall cost of O
(
q2δ
)

instead of O
(
q2δ+1

)
using block Wiedemann’s algorithm [25], we then

have a speedup of the order of q.

3.3 The GKZ algorithm

In the following, we place ourselves in R1 = Fqδ [X, Y]/(Y−Xq) = Fqδ [X] in order to manipulate
univariate polynomials.

As we saw before, to be usable for a whole descent, the algorithm must start from an ir-
reducible degree 2m+1 polynomial in Fqδ in X. The irreducible condition is necessary to have
the roots of the polynomial to live in Fqδd\F

q
δd2

, otherwise we would not be able to descend.

In order to have a polynomial which is on this form, one way can be to write P[α] = gα.P =
A
B with A and B be two polynomials of degree 2l in X and g the base of the discrete logarithm
we want to compute. The coefficients of A and B can be computed through linear algebra for
instance: B · P[α] = A mod f2, then

2n∑
i=0

Bi(P[α]X
i mod f2) =

2n∑
i=0

AiX
i mod f2

leads to deg f2 + 1 relations for 2l+1 + 1 variables: {Ai,Bi}i (the +1 instead of a +2 come from
the fact that we can set A to be monic for instance, which removes one variable). Then in order
to have enough relations to have at least one solution we need that deg f2 6 2l+1 + 1. Then
we can notice that the optimal case deg f2 = 2m+1 + 1 allows us to skip one step of the descent,
because we can go from a degree q = 2m+1 polynomial in the general case to 2 degree 2m

polynomials.
As the probability for a random polynomial of degree q in Fqδ [X] to be irreducible is

O
(

1
q

)
[24, Lemma 2] we need approximatively q2 tries before succeeding, assuming that A

and B behave like two independent random polynomial.

10

Fm−1

Fm−2

F2

F1

F0

1 2

1 2

1 2

1 2

1 2 2m

Figure 5: Elimination of a degree 2m polynomial: ← denotes a degree 2 elimination, ↘ is
taking the field norm with respect to the indicated fields and↖ represents the factorisation in
the indicated field.

Once we have a degree 2m polynomial P, we can extend the field by a random irreducible
degree 2m−1 polynomial to end up with polynomial in the field: Fm−1 = F

qδ2(m−1) . As P is
irreducible, it splits entirely in Fm with roots in Fm\Fm−1, which leads to:

P =

2m−1∏
i=1

Pi (13)

where Pi are degree 2 irreducible polynomials in Fm−1[X].
We can then apply the degree 2 elimination as described in section 2.3 to have:

P1 = h̄1

q+2∏
i=1

Qi (14)

By noticing that all roots of P in Fm are conjugate under Gal(Fm/F0) we can write Pi = P
[i(m−1)]
1

where P[k] denotes the polynomial P with its coefficients raised to the power 2δk. From the
factorisation (14) we can derive a factorisation for each Pi using the fact that Galois conjugation
is a ring homomorphism as follows:

Pi = h̄1

q+2∏
k=1

Q
[i(m−1)]
k

Therefore we only have to do the descent one time, and then multiply each factors by its con-
jugate under Gal(Fm−1/Fm−2).

In order to obtain obtain irreducible polynomials of degree 2 in Fm−2 we only have make
the product of two conjugate polynomial under Gal(Fm−1/Fm−2):

P1P2 = h̄1
2
q+2∏
i=1

QiQ
[m−2]
i

11

Then we can repeat the process by applying the 2-descent on QiQ
[m−2]
i for 1 6 i 6 q + 2

and iterate the Galois conjugate product which can be viewed as the norm of P1 . . .P2j under
Gal(Fm−j/Fm−j−1) for the j-th iteration of the algorithm. This is summarized in figure 5.

We finally end up with a relation between P = P1 . . .Pn and at most (q + 2)log2 q linear
polynomials which allow us to compute the discrete logarithm of the original polynomial.

We notice that as the computation is almost costless, we can afford to do it multiple times
to save memory. Then instead of storing the whole descent, we store the element B ∈ B used
to compute the splitting relation in (6) and the result of the different sub-logarithms in a depth-
first way, and then throw the logarithms at level j + 1 when we can compute the logarithm at
level j in the descent tree. We then have a descent part which takes only O

(
log2 q · q

)
space

instead of O
(
q1.5δ

)
which is a nice improvement.

4 Results

At first we implemented the BGJT algorithm before noticing the first problem during the linear
descent: the trap polynomials. Some research on the subject lead us to the article of Cheng, Wan,
and Zhuang [8]. This article presents the problem: when we met a factor Q of h1(X)Y + h0(X)

during the descent, this lead to the relation:

Xq − X =
∏
α∈Fq

(X− α) = 0 mod Q

Then Q is a factor of the left hand side of (4), and as the degree of the left hand side of (4) is
3, it is likely that Q will appear with power 1, and then simplify in the relation. Therefore we
will not be able to make this logarithm appear through these relations.

This problem is solved by the introduction of the (P + a)q = P̃ + ã relations, which are
independent of f2 and h1(X)Y + h0(X), and then relates the logarithm of Q with the logarithm
of other elements of the factor basis.

However the use of this trick for the factor basis matrix as explained in the last paragraph of
section 3.2 appears to have a great practical incidence, reducing the factor basis linear algebra
part to go from 1 minute to 1 second in F23·4·(23−1) , which is already a great improvement.

The relation generation is a quite fast phase as it is done in O
(
qδ · log(degP)

)
for a fixed

(δ,∆), the computational bottleneck is the linear algebra which has to be done for each sub-
logarithm. This method gives us qδ such sub-logarithms which makes the descent-tree width
grow very fast.

If the factor base computation with ∆ = 1 is done quickly, the matrices to invert for the
descent phase are denser, then it became hard to do more than one step in a reasonable time.

After that we worked on the implementation of the GKZ descent phase. But we met some
problems with the matrix we used for the linear phase. Before noticing that our version of
Magma: v.2.15-12 has a bug in its irreducible test algorithm. As a consequence, it uses
reducible matrices to extend the fields which was then no longer Galois.

To avoid it, we used the Magma online calculator to generates the polynomials h0 and h1

we used for the descent phase.
In order to do a big computation, we take the following parameters described in table 2.

This gives us a representation for the field F21300

When I write my report, the computation is still running, we met a problem with the previ-
ous version due to a factorisation we did not take into account in our computation. The kernel

12

Parameter Value

q 25

δ 4

h0 X+ x10 · y3 + x26 · y2 + x13 · y+ x11

h1 X2 + (y3 + x9 · y2 + x · y+ x18) · X+ x2 · y3 + x8 · y2 + x10 · y+ x22

Table 2: Parameters we used. x is a primitive element of Fq and y a primitive element of Fqδ .
Respectively a root of X5 + X3 + 1 and a root of Z4 + Z2 + (x+ 1)Z+ 1.

computation algorithm (namely the Lanczos block algorithm [21]) works over finite field, and
then needs to work in Fpk . All our computations are done modulo `|21300 − 1 =

∣∣Fqδn∣∣ with
big enough factors. Then the result is build again using the Chinese remainder theorem. To
do this, our first implementation was doing the factorisation of 21300 − 1 using the successive
trial division until reaching a certain threshold. And then use ` as it is. But it was a bad idea
because if Magma has built-in table to factorize 21300 − 1, it does not have one for every fac-
tors of 21300 − 1. And the computation aborted after 215h of calculus. Then I launched again
the kernel computation on a GPU using the gpulinalg [18] tool developed in LORIA for this
purpose implementing the Block Wiedemann algorithm we used in our analysis.

However, for a more modest example, we manage to solve the discrete logarithm in F23·4·(2·23+1)

of 204 bits in 16.5 seconds to get the logarithms of the linear factor and 1.2 sec to descent the
logarithm of an given element in Fqδn . For comparison, the built-in Magma algorithm [7, 9]
takes 12 minutes to compute the same logarithm (including 1 minute for the individual loga-
rithm descent).

5 Conclusion

We presented in this report the state-of-the-art algorithms to solve the discrete logarithm prob-
lems and analysed their efficiency from a practical point of view. We saw why, if it were a
major theoretical breakthrough, the BGJT algorithm was not used excessively even for com-
putational records [27], where the L

(1
4 + o(1)

)
-algorithm [19] is still privileged. As the GKZ

algorithm is still very recent, not a lot of work has been done on it and we hope that we were
the first ones to implement it and use it for a real world sized logarithm as we saw in section 4.

There is still work to do, as to find a way to choose the best algorithm to solve the discrete
logarithm case by case in order to build a portfolio algorithm to solve the discrete logarithm.
This has been the work of Adj et al. [1, 2, 3] in a case-by-case approach.

Another possible future work could be to find a way to enhance the smoothness basis
resolution. As it were not the bottleneck of the computation and were already completely
polynomial, it is rare to see the trace of the (X + a)q = Xq + ã optimisation in the literature
even if its existence is known.

The last and more natural way to improve the quality of discrete logarithm algorithm based
on function field sieve could be to improve the quality of the descent (i.e. lowering the number
of nodes for a complete descent). We can see than in the optimal case of the GKZ descent we
can express an irreducible degree 2 polynomial in terms of only one degree 1 polynomial, as
explained in remark 3. It could be a good idea to look further on the conditions to obtain such

13

a descent and see if it can be computed.
Another not exploited area of study are the polynomial h0 and h1 which can be chosen, and

then give us some liberty. One interesting thing to do is to see how we can take advantage of
this liberty, for example to choose h0 and h1 such that g and h = gx have the smaller possible
degree.

To conclude, this internship has been the occasion to work on a completely new subject and
to get familiar with the latest advances on it. It also has been the occasion to learn how to use
a new computer algebra system that is Magma and developing a proof-of-concept implemen-
tation of the algorithms described in theoretical articles.

Acknowledgements

I want to thank the COSIC team for their warm and friendly welcome and their help, in partic-
ular Fre Vercauteren for taking time to help me with algebra and his reactivity, and also Filipe
Beato, Tomer Ashur, Michael Herrmann, Kimmo Järvinen, Roel Peeters and Alan Szepieniec
for the discussions at lunch time.

I also want to thank Pierrick Gaudry and Emmanuel Thomé for their help about under-
standing their algorithm and their advices for real world implementation of matrix algorithms.

Thanks to Christophe Mouilleron for taking his time to explain me the different matrix
algorithms and the devastating effects of a bad choice of algorithm.

References

[1] G. Adj, A. Menezes, T. Oliveira, and F. Rodriguez-Henriquez. Weakness of F36·1429 and
F24·3041 for discrete logarithm cryptography. IACR Cryptology ePrint Archive, 2013:737, 2013.

[2] G. Adj, A. Menezes, T. Oliveira, and F. Rodríguez-Henríquez. Weakness of F36·509 for
discrete logarithm cryptography. In Pairing-Based Cryptography–Pairing 2013, pages 20–
44. Springer, 2014.

[3] G. Adj, A. Menezes, T. Oliveira, and F. Rodríguez-Henríquez. Computing discrete loga-
rithms in F36∗137 and F36∗163 using magma. Cryptology ePrint Archive, Report 2014/057,
2014. http://eprint.iacr.org/.

[4] L. Adleman. A subexponential algorithm for the discrete logarithm problem with appli-
cations to cryptography. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 55–60. IEEE, 1979.

[5] L. Adleman. The function field sieve. In Algorithmic number theory, pages 108–121.
Springer, 1994.

[6] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial algorithm for dis-
crete logarithm in finite fields of small characteristic. Cryptology ePrint Archive, Report
2013/400, 2013. http://eprint.iacr.org/.

[7] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language.
J. Symbolic Comput., 24(3-4):235–265, 1997. ISSN 0747-7171. doi: 10.1006/jsco.1996.0125.
URL http://dx.doi.org/10.1006/jsco.1996.0125. Computational algebra and
number theory (London, 1993).

14

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1006/jsco.1996.0125

[8] Q. Cheng, D. Wan, and J. Zhuang. Traps to the BGJT-Algorithm for Discrete Logarithms.
Cryptology ePrint Archive, Report 2013/673, 2013. http://eprint.iacr.org/.

[9] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. Information
Theory, IEEE Transactions on, 30(4):587–594, 1984.

[10] W. Diffie and M. E. Hellman. New directions in cryptography. Information Theory, IEEE
Transactions on, 22(6):644–654, 1976.

[11] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In Advances in Cryptology, pages 10–18. Springer, 1985.

[12] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology ePrint
Archive, Report 2006/165, 2006. http://eprint.iacr.org/.

[13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field sieve and
the impact of higher splitting probabilities: Application to discrete logarithms in F21971 and
F23164 . Cryptology ePrint Archive, Report 2013/074, 2013. http://eprint.iacr.org/.

[14] D. M. Gordon. Discrete logarithms in GF(P) using the Number Field Sieve. SIAM Journal
on Discrete Mathematics, 6(1):124–138, 1993.

[15] R. Granger. Estimates for discrete logarithm computations in finite fields of small charac-
teristic. In Cryptography and coding, pages 190–206. Springer, 2003.

[16] R. Granger, T. Kleinjung, and J. Zumbrägel. Breaking ‘128-bit secure’ supersingular bi-
nary curves (or how to solve discrete logarithms in F24·1223 and F212·367). Cryptology ePrint
Archive, Report 2014/119, 2014. http://eprint.iacr.org/.

[17] R. Granger, T. Kleinjung, and J. Zumbrägel. On the powers of 2. Cryptology ePrint
Archive, Report 2014/300, 2014. http://eprint.iacr.org/.

[18] H. Jeljeli. Resolution of linear algebra for the discrete logarithm problem using GPU and
multi-core architectures. arXiv preprint arXiv:1402.3661, 2014.

[19] A. Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in very small
characteristic. Cryptology ePrint Archive, Report 2013/095, 2013. http://eprint.
iacr.org/.

[20] A. Joux and R. Lercier. The function field sieve in the medium prime case. In Advances in
Cryptology-EUROCRYPT 2006, pages 254–270. Springer, 2006.

[21] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite fields.
In Advances in Cryptology-CRYPT0’90, pages 109–133. Springer, 1991.

[22] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied cryptography.
CRC press, 2010.

[23] D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth polynomials
over finite fields. In Algorithmic number theory, pages 226–236. Springer, 1998.

[24] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing, 9(2):
273–280, 1980.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[25] E. Thomé. Subquadratic computation of vector generating polynomials and improvement
of the block wiedemann algorithm. Journal of symbolic computation, 33(5):757–775, 2002.

[26] F. Vercauteren. The number field sieve in the medium prime case. status: published, 2006.

[27] J. Zumbrägel. Discrete Logarithms in GF(29234). NMBRTHRY List, 2014. https://
listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401.

A A word about Galois fields

The goal of this section is not to rebuild all the Galois theory, but just to explain some properties
of the Galois fields to help the reader to understand the tricks that are used in this report.

Let Fq be a finite field, and P(X) =
n∑
i=0

piX
i a monic irreducible degree n polynomial in

Fq[X]. As we saw in section 2.1, a field extension can be interpreted as doing the calculations

in Fq[X] modulo P which means basically replacing Xn by −
n−1∑
i=0

piX
i. Then taking a multi-

plicative invert in Fqn can be viewed as doing a polynomial extended GCD.
Then if P is not irreducible, the invert modulo P does not exist for any polynomialQ divid-

ing P. Therefore the structure we built is not a field.
Another interpretation of that is to see the extension as adding a primitive root of P to Fq

and taking the minimal set that makes the new set a field. This is because for ω a root of P we

have P(ω) = 0 which meansωn = −
n−1∑
i=0

piω
i which is the same operation as above.

And all other roots are of the formωq
i

because:

P(ωq
i

) =

n∑
k=0

pkω
kqi =

n∑
k=0

(pkω
k)q

i

= P(ω)q
i

= 0

Because pk ∈ Fq which implies pqk = pk and in the additive group we have the relation:
(a+ b)q = aq + bq. And there are n− 1 of them.

We then can express P in Fqn [Y] as the product of all the (Y−ωq
i
)06i6n. What we can notice

is that we can also express P in term of polynomials over the intermediate field
{
Fqd
}
d|n

as the

product of n/d degree d polynomials. The idea is to multiply together the Y−ωq
i

elements in
order to have a polynomial of coefficients in Fqd . To do this we takes the elements of the form

Y −ωq
i n
d , then: [

d∏
i=0

(Y −ωq
i n
d)

]qd
=

d∏
i=0

(Y −ωq
i n
d) (15)

Which means that the elements lives in Fqd . There are n/d different polynomials (n/d choice
ofω ending with different products) and the product of all of them is indeed P.

The product (15) is a degree d polynomials in Fqd , and we can add that it is irreducible. It
is also called the norm over Gal(Fqn/Fqd).

Taking the element
d∏
i=1

(Y−ωq
i n
d) is called taking the conjugate of Y−ω over Gal(Fqn/Fqd)

16

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401

	Introduction
	The different FFS algorithms
	Overview of the function field sieve
	The BGJT algorithm
	The GKZ degree 2d descent

	Improvements and analysis of the parameter ranges
	Mathematical background
	The BGJT algorithm
	The GKZ algorithm

	Results
	Conclusion
	A word about Galois fields

